
Christine A Petersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5882076/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Domestic mammals as reservoirs for <i>Leishmania donovani</i> on the Indian subcontinent: Possibility and consequences on elimination. Transboundary and Emerging Diseases, 2022, 69, 268-277.	1.3	18
2	Bayesian latent class models for identifying canine visceral leishmaniosis using diagnostic tests in the absence of a gold standard. PLoS Neglected Tropical Diseases, 2022, 16, e0010236.	1.3	0
3	Inclusion of environmentally themed search terms improves Elastic net regression nowcasts of regional Lyme disease rates. PLoS ONE, 2022, 17, e0251165.	1.1	Ο
4	<i>Borrelia burgdorferi</i> (Spirochaetales: Spirochaetaceae) Infection Prevalence and Host Associations of Ticks Found on <i>Peromyscus spp.</i> in Maryland. Journal of Medical Entomology, 2022, 59, 752-757.	0.9	5
5	COVID-19 Vaccine Uptake and Intentions Following US Food and Drug Administration Approval of the Pfizer-BioNTech COVID-19 Vaccine. JAMA Internal Medicine, 2022, 182, 678.	2.6	2
6	Role of NK-Like CD8 ⁺ T Cells during Asymptomatic Borrelia burgdorferi Infection. Infection and Immunity, 2022, , e0055521.	1.0	0
7	Geographic Origin and Vertical Transmission of <i>Leishmania infantum</i> Parasites in Hunting Hounds, United States. Emerging Infectious Diseases, 2022, 28, .	2.0	3
8	Visceral Leishmaniasis and the Skin: Dermal Parasite Transmission to Sand Flies. Pathogens, 2022, 11, 610.	1.2	5
9	Days of Flooding Associated with Increased Risk of Influenza. Journal of Environmental and Public Health, 2022, 2022, 1-10.	0.4	3
10	Canine leishmaniasis in Northern California—A case report. Veterinary Clinical Pathology, 2021, 50, 71-75.	0.3	3
11	Response from the authors re Bourdeau et al. 2020. Veterinary Parasitology, 2021, 293, 109409.	0.7	0
12	Epidemiology of Vector-Borne Pathogens Among U.S. Government Working Dogs. Vector-Borne and Zoonotic Diseases, 2021, 21, 358-368.	0.6	9
13	Maternal transfer of neutralizing antibodies to B. burgdorferi OspA after oral vaccination of the rodent reservoir. Vaccine, 2021, 39, 4320-4327.	1.7	2
14	Leishmania infantum xenodiagnosis from vertically infected dogs reveals significant skin tropism. PLoS Neglected Tropical Diseases, 2021, 15, e0009366.	1.3	11
15	Epidemiologic, Clinical and Immunological Consequences of Co-Infections during Canine Leishmaniosis. Animals, 2021, 11, 3206.	1.0	5
16	Bayesian compartmental models and associated reproductive numbers for an infection with multiple transmission modes. Biometrics, 2020, 76, 711-721.	0.8	2
17	Impact of different Leishmania reservoirs on sand fly transmission: Perspectives from xenodiagnosis and other one health observations. Veterinary Parasitology, 2020, 287, 109237.	0.7	9
18	Predominant risk factors for tick-borne co-infections in hunting dogs from the USA. Parasites and Vectors, 2020, 13, 247.	1.0	14

CHRISTINE A PETERSEN

#	Article	IF	CITATIONS
19	A randomized control trial evaluating efficacy of antimicrobial impregnated hospital privacy curtains in an intensive care setting. American Journal of Infection Control, 2020, 48, 862-868.	1.1	9
20	Vaccination against canine leishmaniasis in Brazil. International Journal for Parasitology, 2020, 50, 171-176.	1.3	20
21	The balancing act: Immunology of leishmaniosis. Research in Veterinary Science, 2020, 130, 19-25.	0.9	44
22	Bioaerosols generated from toilet flushing in rooms of patients with <i>Clostridioides difficile</i> infection. Infection Control and Hospital Epidemiology, 2020, 41, 517-521.	1.0	17
23	Comorbid infections induce progression of visceral leishmaniasis. Parasites and Vectors, 2019, 12, 54.	1.0	29
24	Could canine visceral leishmaniosis take hold in the UK?. Veterinary Record, 2019, 184, 438-440.	0.2	3
25	Canine Brucellosis. Veterinary Clinics of North America - Small Animal Practice, 2019, 49, 763-779.	0.5	19
26	Design and synthesis of multivalent α-1,2-trimannose-linked bioerodible microparticles for applications in immune response studies of <i>Leishmania major</i> infection. Beilstein Journal of Organic Chemistry, 2019, 15, 623-632.	1.3	4
27	Maternal Leishmania infantum infection status has significant impact on leishmaniasis in offspring. PLoS Neglected Tropical Diseases, 2019, 13, e0007058.	1.3	14
28	Bayesian compartmental model for an infectious disease with dynamic states of infection. Journal of Applied Statistics, 2019, 46, 1043-1065.	0.6	6
29	Detection and identification of blood-borne infections in dogs in Nigeria using light microscopy and the polymerase chain reaction. Veterinary Parasitology: Regional Studies and Reports, 2018, 11, 55-60.	0.3	9
30	Leishmania-Derived Trimannose Modulates the Inflammatory Response To Significantly Reduce Leishmania major-Induced Lesions. Infection and Immunity, 2018, 86, .	1.0	3
31	2018 AAHA Infection Control, Prevention, and Biosecurity Guidelines*. Journal of the American Animal Hospital Association, 2018, 54, 297-326.	O.5	41
32	Randomized, controlled, double-blinded field trial to assess Leishmania vaccine effectiveness as immunotherapy for canine leishmaniosis. Vaccine, 2018, 36, 6433-6441.	1.7	26
33	Frequent Exposure to Many Hunting Dogs Significantly Increases Tick Exposure. Vector-Borne and Zoonotic Diseases, 2018, 18, 519-523.	0.6	9
34	Safety Analysis of Leishmania Vaccine Used in a Randomized Canine Vaccine/Immunotherapy Trial. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1332-1338.	0.6	13
35	Novel Areas for Prevention and Control of Canine Leishmaniosis. Trends in Parasitology, 2017, 33, 718-730.	1.5	83
36	Leishmania incidence and prevalence in U.S. hunting hounds maintained via vertical transmission. Veterinary Parasitology: Regional Studies and Reports, 2017, 10, 75-81.	0.3	12

#	Article	IF	CITATIONS
37	Diagnostic Challenges in the Era of Canine Leishmania infantum Vaccines. Trends in Parasitology, 2017, 33, 706-717.	1.5	94
38	The use of kDNA minicircle subclass relative abundance to differentiate between Leishmania (L.) infantum and Leishmania (L.) amazonensis. Parasites and Vectors, 2017, 10, 239.	1.0	34
39	Semi-quantitative measurement of asymptomatic L. infantum infection and symptomatic visceral leishmaniasis in dogs using Dual-Path Platform® CVL. Applied Microbiology and Biotechnology, 2017, 101, 381-390.	1.7	17
40	Regulatory IgDhi B Cells Suppress T Cell Function via IL-10 and PD-L1 during Progressive Visceral Leishmaniasis. Journal of Immunology, 2016, 196, 4100-4109.	0.4	54
41	Telephone survey to investigate relationships between onychectomy or onychectomy technique and house soiling in cats. Journal of the American Veterinary Medical Association, 2016, 249, 638-643.	0.2	17
42	Recovery of antigen-specific T cell responses from dogs infected with Leishmania (L.) infantum by use of vaccine associated TLR-agonist adjuvant. Vaccine, 2016, 34, 5225-5234.	1.7	31
43	Immunologic progression of canine leishmaniosis following vertical transmission in United States dogs. Veterinary Immunology and Immunopathology, 2016, 169, 34-38.	0.5	32
44	A Mother's Gift: Congenital Transmission of Trypanosoma and Leishmania Species. PLoS Pathogens, 2016, 12, e1005302.	2.1	26
45	Acidâ€Triggered Degradable Reagents for Differentiation of Adaptive and Innate Immune Responses to <i>Leishmania</i> â€Associated Sugars. Angewandte Chemie - International Edition, 2015, 54, 9610-9613.	7.2	6
46	Vectorborne Transmission ofLeishmania infantumfrom Hounds, United States. Emerging Infectious Diseases, 2015, 21, 2209-2212.	2.0	29
47	Activation of Autophagy and Nucleotide-Binding Domain Leucine-Rich Repeat–Containing-Like Receptor Family, Pyrin Domain–Containing 3 Inflammasome during Leishmania infantum–Associated Glomerulonephritis. American Journal of Pathology, 2015, 185, 2105-2117.	1.9	36
48	Identification of broadly conserved cross-species protective <i>Leishmania</i> antigen and its responding CD4 ⁺ T cells. Science Translational Medicine, 2015, 7, 310ra167.	5.8	51
49	Early Detection ofBrucella Canisvia Quantitative Polymerase Chain Reaction Analysis. Zoonoses and Public Health, 2014, 61, 48-54.	0.9	26
50	Chronic infection by Leishmania amazonensis mediated through MAPK ERK mechanisms. Immunologic Research, 2014, 59, 153-165.	1.3	28
51	Leishmaniosis. , 2014, , 713-726.		3
52	Targeted extracellular signal-regulated kinase activation mediated byÂLeishmania amazonensis requires MP1 scaffold. Microbes and Infection, 2014, 16, 328-336.	1.0	14
53	An In Vitro Model of Antibody-Enhanced Killing of the Intracellular Parasite Leishmania amazonensis. PLoS ONE, 2014, 9, e106426.	1.1	19
54	Reservoir Control Strategies for Leishmaniasis: Past, Present, and Future. , 2014, , 67-75.		0

4

CHRISTINE A PETERSEN

#	Article	IF	CITATIONS
55	Programmed Death 1–Mediated T Cell Exhaustion during Visceral Leishmaniasis Impairs Phagocyte Function. Journal of Immunology, 2013, 191, 5542-5550.	0.4	158
56	Response to Dantas-Torres et al. Pet attachment and voluntary community participation in canine Leishmania prevention. Trends in Parasitology, 2013, 29, 149.	1.5	1
57	Transmission and Epidemiology of Zoonotic Protozoal Diseases of Companion Animals. Clinical Microbiology Reviews, 2013, 26, 58-85.	5.7	213
58	Assessment of owner willingness to treat or manage diseases of dogs and cats as a guide to shelter animal adoptability. Journal of the American Veterinary Medical Association, 2013, 242, 46-53.	0.2	16
59	Neurological manifestations of human leishmaniasis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 114, 193-198.	1.0	10
60	First Report of Phlebotomine Sand Flies (Diptera: Psychodidae) in Kansas and Missouri, and a PCR Method to Distinguish <l>Lutzomyia shannoni</l> From <l>Lutzomyia vexator</l> . Journal of Medical Entomology, 2012, 49, 1460-1465.	0.9	13
61	Preventing Zoonotic Canine Leishmaniasis in Northeastern Brazil: Pet Attachment and Adoption of Community Leishmania Prevention. American Journal of Tropical Medicine and Hygiene, 2012, 87, 822-831.	0.6	25
62	Mild Plasmodium falciparum Malaria following an Episode of Severe Malaria Is Associated with Induction of the Interferon Pathway in Malawian Children. Infection and Immunity, 2012, 80, 1150-1155.	1.0	38
63	Promotion of a Functional B Cell Germinal Center Response after Leishmania Species Co-Infection Is Associated with Lesion Resolution. American Journal of Pathology, 2012, 180, 2009-2017.	1.9	23
64	B Cell-Mediated Regulation of Immunity During Leishmania Infection. , 2012, , 85-98.		0
65	Pathogen-Derived Oligosaccharides Improve Innate Immune Response to Intracellular Parasite Infection. American Journal of Pathology, 2011, 179, 1329-1337.	1.9	30
66	IL-2 limits IL-12 enhanced lymphocyte proliferation during Leishmania amazonensis infection. Cellular Immunology, 2011, 270, 32-39.	1.4	4
67	Transplacental Transmission of Leishmania infantum as a Means for Continued Disease Incidence in North America. PLoS Neglected Tropical Diseases, 2011, 5, e1019.	1.3	110
68	A deficiency in the B cell response of C57BL/6 mice correlates with loss of macrophage-mediated killing of Leishmania amazonensis. International Journal for Parasitology, 2010, 40, 157-161.	1.3	16
69	Immunologic Indicators of Clinical Progression during Canine <i>Leishmania infantum</i> Infection. Vaccine Journal, 2010, 17, 267-273.	3.2	84
70	Synthesis of Multivalent Tuberculosis and <i>Leishmania</i> -Associated Capping Carbohydrates Reveals Structure-Dependent Responses Allowing Immune Evasion. Journal of the American Chemical Society, 2010, 132, 11428-11430.	6.6	42
71	New Means of Canine Leishmaniasis Transmission in North America: The Possibility of Transmission to Humans Still Unknown. Interdisciplinary Perspectives on Infectious Diseases, 2009, 2009, 1-5.	0.6	21
72	Canine Leishmaniasis in North America: Emerging or Newly Recognized?. Veterinary Clinics of North America - Small Animal Practice, 2009, 39, 1065-1074.	0.5	67

CHRISTINE A PETERSEN

#	Article	IF	CITATIONS
73	Leishmaniasis, an Emerging Disease Found in Companion Animals in the United States. Topics in Companion Animal Medicine, 2009, 24, 182-188.	0.4	85
74	Altered Dendritic Cell Phenotype in Response to Leishmania amazonensis Amastigote Infection Is Mediated by MAP Kinase, ERK. American Journal of Pathology, 2009, 174, 1818-1826.	1.9	52
75	Disseminated Leishmania infantum infection in two sibling foxhounds due to possible vertical transmission. Canadian Veterinary Journal, 2008, 49, 1005-8.	0.0	36
76	Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7074-7079.	3.3	186
77	MACROPHAGE KILLING OF LEISHMANIA AMAZONENSIS AMASTIGOTES REQUIRES BOTH NITRIC OXIDE AND SUPEROXIDE. American Journal of Tropical Medicine and Hygiene, 2007, 76, 669-675.	0.6	122
78	Macrophage killing of Leishmania amazonensis amastigotes requires both nitric oxide and superoxide. American Journal of Tropical Medicine and Hygiene, 2007, 76, 669-75.	0.6	56
79	Soluble factors from Leishmania major-specific CD4+T cells and B cells limit L. amazonensis amastigote survival within infected macrophages. Microbes and Infection, 2006, 8, 2547-2555.	1.0	18
80	Trypanosoma cruzi Infection and Nuclear Factor Kappa B Activation Prevent Apoptosis in Cardiac Cells. Infection and Immunity, 2006, 74, 1580-1587.	1.0	49
81	Toll-Like Receptor 2 Regulates Interleukin-1β-Dependent Cardiomyocyte Hypertrophy Triggered by Trypanosoma cruzi. Infection and Immunity, 2005, 73, 6974-6980.	1.0	58
82	Novel PI 3-kinase-dependent mechanisms of trypanosome invasion and vacuole maturation. Journal of Cell Science, 2003, 116, 3611-3622.	1.2	165
83	Role for Interleukin-1β in Trypanosoma cruzi -Induced Cardiomyocyte Hypertrophy. Infection and Immunity, 2003, 71, 4441-4447.	1.0	55