Carlos A M Afonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5881674/publications.pdf

Version: 2024-02-01

288 papers 14,151 citations

²⁶⁶³⁰
56
h-index

24258 110 g-index

338 all docs 338 docs citations

times ranked

338

14940 citing authors

#	Article	IF	CITATIONS
1	5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 2011, 13, 754.	9.0	1,391
2	Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chemical Society Reviews, 2009, 38, 2410.	38.1	1,268
3	Preparation and Characterization of New Room Temperature Ionic Liquids. Chemistry - A European Journal, 2002, 8, 3671.	3.3	512
4	Recyclable Stereoselective Catalysts. Chemical Reviews, 2009, 109, 418-514.	47.7	420
5	Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges. Green Chemistry, 2010, 12, 1139.	9.0	406
6	Dioxins sources and current remediation technologies — A review. Environment International, 2008, 34, 139-153.	10.0	380
7	More Sustainable Approaches for the Synthesis of N-Based Heterocycles. Chemical Reviews, 2009, 109, 2703-2802.	47.7	339
8	Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria. Ecotoxicology and Environmental Safety, 2012, 76, 162-168.	6.0	254
9	Impact of ionic liquids in environment and humans: An overview. Human and Experimental Toxicology, 2010, 29, 1038-1054.	2.2	235
10	Pyridinium salts: from synthesis to reactivity and applications. Organic Chemistry Frontiers, 2018, 5, 453-493.	4.5	230
11	Supported liquid membranes using ionic liquids: study of stability and transport mechanisms. Journal of Membrane Science, 2004, 242, 197-209.	8.2	229
12	Highly Selective Transport of Organic Compounds by Using Supported Liquid Membranes Based on Ionic Liquids. Angewandte Chemie - International Edition, 2002, 41, 2771-2773.	13.8	214
13	Comparison of Physicochemical Properties of New Ionic Liquids Based on Imidazolium, Quaternary Ammonium, and Guanidinium Cations. Chemistry - A European Journal, 2007, 13, 8478-8488.	3.3	207
14	Synthesis of Chiral Cyclopentenones. Chemical Reviews, 2016, 116, 5744-5893.	47.7	194
15	Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids [C4mim][NTf2], [C4mim][dca], [C2mim][EtOSO3] and [Aliquat][dca]. Fluid Phase Equilibria, 2010, 294, 157-179.	2.5	171
16	Studies on the Selective Transport of Organic Compounds by Using Ionic Liquids as Novel Supported Liquid Membranes. Chemistry - A European Journal, 2002, 8, 3865-3871.	3.3	161
17	Recent Advances in Chiral Resolution through Membrane-Based Approaches. Angewandte Chemie - International Edition, 2004, 43, 5293-5295.	13.8	151
18	Effect of ionic liquids on human colon carcinoma HT-29 and CaCo-2 cell lines. Green Chemistry, 2007, 9, 873.	9.0	142

#	Article	IF	CITATIONS
19	Synthesis and properties of tetra-alkyl-dimethylguanidinium salts as a potential new generation of ionic liquids. Green Chemistry, 2003, 5, 347-352.	9.0	140
20	lonic liquids as a recyclable reaction medium for the Baylis–Hillman reaction. Tetrahedron, 2001, 57, 4189-4193.	1.9	132
21	Facilitated transport of CO2 and SO2 through Supported Ionic Liquid Membranes (SILMs). Desalination, 2009, 245, 485-493.	8.2	124
22	Toxicological evaluation on human colon carcinoma cell line (CaCo-2) of ionic liquids based on imidazolium, guanidinium, ammonium, phosphonium, pyridinium and pyrrolidinium cations. Green Chemistry, 2009, 11, 1660.	9.0	124
23	Direct transformation of 5-hydroxymethylfurfural to the building blocks 2,5-dihydroxymethylfurfural (DHMF) and 5-hydroxymethyl furanoic acid (HMFA) via Cannizzaro reaction. Green Chemistry, 2013, 15, 2849.	9.0	122
24	Tuning the Reactivity of Dirhodium(II) Complexes with Axial N-Heterocyclic Carbene Ligands: The Arylation of Aldehydes. Angewandte Chemie - International Edition, 2007, 46, 5750-5753.	13.8	113
25	Synthesis of Cyclopentitols by Ring-Closing Approaches. Chemical Reviews, 2009, 109, 6809-6857.	47.7	109
26	Selective recovery of solutes from ionic liquids by pervaporationâ€"a novel approach for purification and green processing. Chemical Communications, 2001, , 1622-1623.	4.1	102
27	Fine Tuning of Dirhodium(II) Complexes: Exploring the Axial Modification. ACS Catalysis, 2012, 2, 370-383.	11.2	101
28	Separation performance of CO2 through Supported Magnetic Ionic Liquid Membranes (SMILMs). Separation and Purification Technology, 2012, 97, 26-33.	7.9	98
29	Axial Coordination of NHC Ligands on Dirhodium(II) Complexes: Generation of a New Family of Catalysts. Journal of Organic Chemistry, 2008, 73, 4076-4086.	3.2	94
30	Isolation, Chemical, and Biotransformation Routes of Labdane-type Diterpenes. Chemical Reviews, 2011, 111, 4418-4452.	47.7	94
31	A comparative study of biocatalysis in non-conventional solvents: Ionic liquids, supercritical fluids and organic media. Green Chemistry, 2004, 6, 466-470.	9.0	93
32	Liquid membranes using ionic liquids: the influence of water on solute transport. Journal of Membrane Science, 2005, 249, 153-162.	8.2	90
33	Interfacial Properties, Densities, and Contact Angles of Task Specific Ionic Liquids. Journal of Chemical & Ch	1.9	89
34	Synthesis and characterization of Magnetic Ionic Liquids (<scp>MILs</scp>) for <scp>CO₂</scp> separation. Journal of Chemical Technology and Biotechnology, 2014, 89, 866-871.	3.2	89
35	Rh(II)-Catalyzed Intramolecular Câ^'H Insertion of Diazo Substrates in Water:Â Scope and Limitations. Journal of Organic Chemistry, 2006, 71, 5489-5497.	3.2	88
36	Stability of supported ionic liquid membranes as studied by X-ray photoelectron spectroscopy. Journal of Membrane Science, 2005, 256, 216-216.	8.2	86

#	Article	IF	Citations
37	Ion jelly: a tailor-made conducting material for smart electrochemical devices. Chemical Communications, 2008, , 5842.	4.1	83
38	Studies on dissolution of carbohydrates in ionic liquids and extraction from aqueous phase. Green Chemistry, 2009, 11, 1406.	9.0	83
39	An Integrated Approach for the Production and Isolation of 5â€Hydroxymethylfurfural from Carbohydrates. ChemSusChem, 2012, 5, 1388-1391.	6.8	83
40	Sustainable design for environment-friendly mono and dicationic cholinium-based ionic liquids. Ecotoxicology and Environmental Safety, 2014, 108, 302-310.	6.0	83
41	lonic Liquids as a Convenient New Medium for the Catalytic Asymmetric Dihydroxylation of Olefins Using a Recoverable and Reusable Osmium/Ligand. Journal of Organic Chemistry, 2004, 69, 4381-4389.	3.2	79
42	Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming. Journal of Controlled Release, 2017, 258, 182-195.	9.9	79
43	Simple transformation of crystalline chiral natural anions to liquid medium and their use to induce chirality. Chemical Communications, 2006, , 2371-2372.	4.1	78
44	lonic liquid as an efficient promoting medium for two-phase nucleophilic displacement reactions. Tetrahedron, 2003, 59, 789-794.	1.9	77
45	Modelling of the enantio-selective extraction of propranolol in a biphasic system. Separation and Purification Technology, 2007, 53, 224-234.	7.9	77
46	Synthesis of 2,4,6-Tri-substituted-1,3,5-Triazines. Molecules, 2006, 11, 81-102.	3.8	76
47	Electrical impedance spectroscopy characterisation of supported ionic liquid membranes. Journal of Membrane Science, 2006, 270, 42-49.	8.2	76
48	Developments in the Photochemistry of Diazo Compounds. Current Organic Chemistry, 2009, 13, 763-787.	1.6	73
49	Catalytic olefin epoxidation with cyclopentadienyl–molybdenum complexes in room temperature ionic liquids. Tetrahedron Letters, 2005, 46, 47-52.	1.4	71
50	Enhanced esterification conversion in a room temperature ionic liquid by integrated water removal with pervaporation. Separation and Purification Technology, 2005, 41, 141-145.	7.9	71
51	Water: A Suitable Medium for the Petasis Boronoâ€Mannich Reaction. European Journal of Organic Chemistry, 2009, 2009, 1859-1863.	2.4	65
52	Regio- and Stereoselective Dirhodium(II)-Catalysed Intramolecular Câ^'H Insertion Reactions of1±-Diazo-1±-(dialkoxyphosphoryl)acetamides and -acetates. European Journal of Organic Chemistry, 2003, 2003, 3798-3810.	2.4	63
53	Epoxidation of cyclooctene catalyzed by dioxomolybdenum(VI) complexes in ionic liquids. Journal of Molecular Catalysis A, 2004, 218, 5-11.	4.8	61
54	Synthesis and Applications of Stenhouse Salts and Derivatives. Chemistry - A European Journal, 2018, 24, 9170-9186.	3.3	61

#	Article	IF	CITATIONS
55	lonic liquids as recyclable reaction media for the tetrahydropyranylation of alcohols. Tetrahedron, 2001, 57, 4405-4410.	1.9	59
56	Thermal and Photochemical Properties of 4′,7-Dihydroxyflavylium in Water–Ionic Liquid Biphasic Systems: A Write–Read–Erase Molecular Switch. Angewandte Chemie - International Edition, 2004, 43, 1525-1527.	13.8	59
57	Osmium catalyzed asymmetric dihydroxylation of methyl trans-cinnamate in ionic liquids, followed by supercritical CO2 product recovery. Journal of Organometallic Chemistry, 2005, 690, 3600-3608.	1.8	56
58	Catalytic asymmetric dihydroxylation of olefins using a recoverable and reusable OsO42â^in ionic liquid [bmim][PF6]. Chemical Communications, 2002, , 3036-3037.	4.1	55
59	Oneâ€Pot Enzymatic Resolution and Separation of <i>sec</i> â€Alcohols Based on Ionic Acylating Agents. Angewandte Chemie - International Edition, 2007, 46, 8178-8181.	13.8	53
60	Coilâ^'Globule Transition of Poly(Dimethylacrylamide):Â Fluorescence and Light Scattering Study. Macromolecules, 2003, 36, 8119-8129.	4.8	51
61	Rh(ii) catalysed intramolecular C–H insertion of diazo substrates in water: a simple and efficient approach to catalyst reuse. Chemical Communications, 2005, , 391-393.	4.1	50
62	Toxicological evaluation of magnetic ionic liquids in human cell lines. Chemosphere, 2013, 92, 100-105.	8.2	50
63	Two-photon absorption properties of push–pull oxazolones derivatives. Dyes and Pigments, 2012, 95, 713-722.	3.7	49
64	Going Beyond the Limits of the Biorenewable Platform: Sodium Dithionite-Promoted Stabilization of 5-Hydroxymethylfurfural. ChemSusChem, 2018, 11, 1612-1616.	6.8	48
65	Efficient catalyst reuse by simple dissolution in non-conventional media. Chemical Communications, 2007, , 2669-2679.	4.1	46
66	Integrated Chemoâ€Enzymatic Production of 5â€Hydroxymethylfurfural from Glucose. ChemSusChem, 2013, 6, 997-1000.	6.8	46
67	Synthesis and properties of new functionalized guanidinium based ionic liquids as non-toxic versatile organic materials. Tetrahedron, 2010, 66, 8785-8794.	1.9	45
68	"Click and go― simple and fast folic acid conjugation. Organic and Biomolecular Chemistry, 2014, 12, 3181-3190.	2.8	45
69	Dirhodium(II)-catalysed Cî—,H insertion on α-diazo-α-phosphono-acetamides in an ionic liquid. Tetrahedron Letters, 2003, 44, 6571-6573.	1.4	43
70	Making expensive dirhodium(ii) catalysts cheaper: Rh(ii) recycling methods. Organic and Biomolecular Chemistry, 2012, 10, 3357.	2.8	43
71	Basicity and stability of urea deep eutectic mixtures. RSC Advances, 2016, 6, 5485-5490.	3.6	43
72	Enzymatic resolution of Indinavir precursor in ionic liquids with reuse of biocatalyst and media by product sublimation. Green Chemistry, 2007, 9, 734-736.	9.0	42

#	Article	IF	Citations
73	Clean osmium-catalyzed asymmetric dihydroxylation of olefins in ionic liquids and supercritical CO2 product recovery. Chemical Communications, 2005, , 107.	4.1	41
74	Thermophysical and magnetic studies of two paramagnetic liquid salts: [C4mim][FeCl4] and [P66614][FeCl4]. Fluid Phase Equilibria, 2013, 350, 43-50.	2.5	41
75	Enantioselective addition of alkynes to imines in ionic liquids. Journal of Molecular Catalysis A, 2004, 214, 161-165.	4.8	40
76	Exploration of quantitative structure–property relationships (QSPR) for the design of new guanidinium ionic liquids. Tetrahedron, 2008, 64, 2216-2224.	1.9	40
77	Lipase catalysed mono and di-acylation of secondary alcohols with succinic anhydride in organic media and ionic liquids. Green Chemistry, 2008, 10, 243-248.	9.0	39
78	Viscosity Measurements of the Ionic Liquid Trihexyl(tetradecyl)phosphonium Dicyanamide [P _{6,6,6,14}][dca] Using the Vibrating Wire Technique. Journal of Chemical & Data, 2012, 57, 1015-1025.	1.9	39
79	Batch and Flow Synthesis of 5-Hydroxymethylfurfural (HMF) from Fructose as a Bioplatform Intermediate: An Experiment for the Organic or Analytical Laboratory. Journal of Chemical Education, 2013, 90, 1373-1375.	2.3	39
80	Ecotoxicological evaluation of magnetic ionic liquids. Ecotoxicology and Environmental Safety, 2017, 143, 315-321.	6.0	39
81	Synthesis of \hat{l} ±-amino esters by dynamic kinetic resolution of \hat{l} ±-haloacyl imidazolidinones. Tetrahedron, 2001, 57, 6589-6605.	1.9	38
82	Synthesis of substituted pyrrolidines and piperidines from endocyclic enamine derivatives. Synthesis of (\hat{A}_{\pm}) -laburnamine. Tetrahedron, 2005, 61, 1221-1244.	1.9	38
83	Diazo†and Transitionâ€Metalâ€Free CH Insertion: A Direct Synthesis of βâ€Lactams. Chemistry - A European Journal, 2015, 21, 1449-1453.	3.3	38
84	Plasma membrane permeabilisation by ionic liquids: a matter of charge. Green Chemistry, 2015, 17, 4587-4598.	9.0	37
85	Cholineâ€Based Ionic Liquids: Improvement of Antimicrobial Activity. ChemistrySelect, 2016, 1, 5909-5916.	1.5	36
86	Transformation of azido-group to n-(t-butoxycarbonyl)amino group under mild conditions via staudinger reaction. Tetrahedron Letters, 1995, 36, 8857-8858.	1.4	34
87	Immobilisation of pig liver esterase in hollow fibre membranes. Enzyme and Microbial Technology, 2001, 29, 625-634.	3.2	34
88	Synthesis of Symmetric Bis(<i>N</i> -alkylaniline)triarylmethanes via Friedel–Crafts-Catalyzed Reaction between Secondary Anilines and Aldehydes. Journal of Organic Chemistry, 2015, 80, 10404-10411.	3.2	34
89	New Chiral Auxiliaries for Dynamic Kinetic Resolution: From Theory to Experiment. Chemistry - A European Journal, 2005, 11 , 330-343.	3.3	33
90	Co-solvent effects in LLE of 1-hydroxyethyl-3-methylimidazolium based ionic liquids+2-propanol+dichloromethane or 1,2-dichloroethane. Fluid Phase Equilibria, 2007, 254, 35-41.	2.5	33

#	Article	IF	Citations
91	Organocatalyzed One-Step Synthesis of Functionalized <i>N-</i> Alkyl-Pyridinium Salts from Biomass Derived 5-Hydroxymethylfurfural. Organic Letters, 2015, 17, 5244-5247.	4.6	33
92	A Comparative Study on Absorption and Selectivity of Organic Vapors by Using Ionic Liquids Based on Imidazolium, Quaternary Ammonium, and Guanidinium Cations. Chemistry - A European Journal, 2007, 13, 8470-8477.	3.3	32
93	Evaluating the toxicity of biomass derived platform chemicals. Green Chemistry, 2016, 18, 4733-4742.	9.0	32
94	Copper(II) Triflate As a Reusable Catalyst for the Synthesis of <i>trans</i> -4,5-Diamino-cyclopent-2-enones in Water. Journal of Organic Chemistry, 2018, 83, 7509-7513.	3.2	32
95	Synthesis of 2,3-Dihydro-1,4-dithiins and 2-Alkylidene-1,4-dithianes by 1,2-Sulfur Migration in 2-(1-Hydroxyalkyl)-1,3-dithiolanes. Synthesis, 1991, 1991, 575-580.	2.3	31
96	Effect of immobilization support, water activity, and enzyme ionization state on cutinase activity and enantioselectivity in organic media. Biotechnology and Bioengineering, 2004, 85, 442-449.	3.3	31
97	Capture of Dioxins by Ionic Liquids. Environmental Science & Eamp; Technology, 2008, 42, 2570-2574.	10.0	31
98	Melting behaviour of ionic salts in the presence of high pressure CO2. Fluid Phase Equilibria, 2010, 294, 121-130.	2.5	31
99	Amberlyst $\hat{A}^{@}$ -15: a reusable heterogeneous catalyst for the dehydration of tertiary alcohols. Tetrahedron, 2012, 68, 7414-7421.	1.9	31
100	Synthesis of 2,4-bifunctionalised cyclopentenones from 2-furaldehyde. RSC Advances, 2013, 3, 14975.	3.6	31
101	Selective arylation of aldehydes with di-rhodium(II)/NHC catalysts. Tetrahedron, 2010, 66, 8494-8502.	1.9	30
102	Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO2 Separation from CH4 and N2. Membranes, 2016, 6, 31.	3.0	30
103	CⰒH Carbene Insertion of α-Diazo Acetamides by Photolysis in Non-Conventional Media. Journal of Organic Chemistry, 2008, 73, 5926-5932.	3.2	29
104	Effect of gelatin–ionic liquid functional polymers on glucose oxidase and horseradish peroxidase kinetics. Reactive and Functional Polymers, 2011, 71, 489-495.	4.1	29
105	Bifunctional Cr ³⁺ modified ion exchange resins as efficient reusable catalysts for the production and isolation of 5-hydroxymethylfurfural from glucose. RSC Advances, 2017, 7, 7555-7559.	3.6	29
106	A direct intramolecular asymmetric catalytic aldol cyclodehydration of meso-3,4-disubstituted-1,6-dialdehydes. Tetrahedron, 2005, 61, 267-273.	1.9	28
107	Intramolecular C–H insertion using NHC–di-rhodium(II) complexes: the influence of axial coordination. Tetrahedron Letters, 2008, 49, 7372-7375.	1.4	28
108	Pot-Economy Autooxidative Condensation of 2-Aryl-2-lithio-1,3-dithianes. Journal of Organic Chemistry, 2018, 83, 1948-1958.	3.2	28

#	Article	IF	Citations
109	An improved method for the generation of organozinc carbenoids and its application in dicarbonyl coupling reactions. Tetrahedron Letters, 1992, 33, 3899-3902.	1.4	26
110	Shearâ€induced lamellar phase of an ionic liquid crystal at room temperature. Liquid Crystals, 2008, 35, 103-107.	2.2	26
111	Brønsted Acidâ€Catalyzed Dihydroxylation of Olefins in Aqueous Medium. Advanced Synthesis and Catalysis, 2011, 353, 2920-2926.	4.3	26
112	Asymmetric Intramolecular CH Insertion of αâ€Diazoacetamides in Water by Dirhodium(II) Catalysts Derived from Natural Amino Acids. Advanced Synthesis and Catalysis, 2012, 354, 2921-2927.	4.3	26
113	The olive-tree leaves as a source of high-added value molecules: Oleuropein. Studies in Natural Products Chemistry, 2020, 64, 131-180.	1.8	26
114	Selective extraction of natural products with benign solvents and recovery by organophilic pervaporation: fractionation of d-limonene from orange peels. Green Chemistry, 2010, 12, 1990.	9.0	25
115	Chiral Guanidinium Ionic Liquids for Asymmetric Dihydroxylation of Olefins with Recycling of the Catalytic System by Supercritical CO2. ACS Catalysis, 2011, 1, 1408-1413.	11.2	25
116	Asymmetric synthesis of trans-4,5-dioxygenated cyclopentenone derivatives by organocatalyzed rearrangement of pyranones and enzymatic dynamic kinetic resolution. Tetrahedron, 2011, 67, 2779-2787.	1.9	25
117	Understanding the Ion Jelly Conductivity Mechanism. Journal of Physical Chemistry B, 2012, 116, 2664-2676.	2.6	25
118	Unsaturated oxazolones as nonlinear fluorophores. Dyes and Pigments, 2013, 99, 642-652.	3.7	25
119	Synthesis of trans-4,5-diaminocyclopent-2-enones from furfural catalyzed by Er(III) immobilized on silica. Tetrahedron Letters, 2017, 58, 302-304.	1.4	25
120	Rationalising diastereoselection in the dynamic kinetic resolution of \hat{l}_{\pm} -haloacyl imidazolidinones. Tetrahedron Letters, 1998, 39, 2203-2206.	1.4	24
121	Synthesis of 3-aminopyrrolidines and piperidines from endocyclic enamine derivatives. Tetrahedron Letters, 2001, 42, 7007-7010.	1.4	24
122	Preparation of enantioselective enriched \hat{l} ±-(dialkoxyphosphoryl)lactams via intramolecular CH insertion with chiral dirhodium(II) catalysts. Journal of Molecular Catalysis A, 2005, 227, 17-24.	4.8	24
123	Ionic liquids as an efficient bulk membrane for the selective transport of organic compounds. Journal of Physical Organic Chemistry, 2008, 21, 718-723.	1.9	24
124	Asymmetric alkene epoxidation by Mn(III)salen catalyst in ionic liquids. Inorganica Chimica Acta, 2010, 363, 3321-3329.	2.4	24
125	Supported Ionic Liquid Membranes for Removal of Dioxins from High-Temperature Vapor Streams. Environmental Science & Environme	10.0	23
126	Magnetic ionic plastic crystal: choline[FeCl4]. Physical Chemistry Chemical Physics, 2013, 15, 12724.	2.8	23

#	Article	IF	Citations
127	Creating Diversity from Biomass: A Tandem Bio/Metal atalysis towards Chemoselective Synthesis of Densely Substituted Furans. ChemSusChem, 2019, 12, 4629-4635.	6.8	23
128	Trienamines derived from 5-substituted furfurals: remote $\hat{l}\mu$ -functionalization of 2,4-dienals. Organic and Biomolecular Chemistry, 2014, 12, 9324-9328.	2.8	22
129	New dirhodium complex with activity towards colorectal cancer. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3413-3415.	2.2	21
130	Ruthenium atalyzed Câ€H Arylation and Alkenylation of Furfural Imines with Boronates. European Journal of Organic Chemistry, 2018, 2018, 6101-6106.	2.4	21
131	Rationalising diastereoselection in the dynamic kinetic resolution of \hat{l}_{\pm} -haloacyl imidazolidinones: a theoretical approach. Tetrahedron, 2001, 57, 6607-6614.	1.9	20
132	Application of nanofiltration to re-use the sharpless asymmetric dihydroxylation catalytic system. Tetrahedron: Asymmetry, 2007, 18, 1637-1641.	1.8	20
133	Preyssler Heteropolyacids in the Selfâ€Etherification of 5â€Hydroxymethylfurfural to 5,5′â€[Oxybis(methylene)]bisâ€2â€furfural Under Mild Reaction Conditions. ChemCatChem, 2017, 9, 3322-33	32 ³ 9 ⁷ .	20
134	Flow-Assisted Synthesis of Bicyclic Aziridines <i>via</i> Photochemical Transformation of Pyridinium Salts. Organic Process Research and Development, 2018, 22, 551-556.	2.7	20
135	Anticancer properties of the abietane diterpene 6,7-dehydroroyleanone obtained by optimized extraction. Future Medicinal Chemistry, 2018, 10, 1177-1189.	2.3	20
136	Reactivity of Diterpenoid Quinones: Royleanones Current Pharmaceutical Design, 2016, 22, 1682-1714.	1.9	20
137	Microwave accelerated facile synthesis of fused polynuclear hydrocarbons in dry media by intramolecular Friedel–Crafts alkylation. Organic and Biomolecular Chemistry, 2004, 2, 514-523.	2.8	19
138	Fluorescence of fullerene C70 in ionic liquids. Chemical Physics Letters, 2010, 497, 43-47.	2.6	19
139	Nâ€Heterocyclic Carbene Dirhodium(II) Complexes as Catalysts for Allylic and Benzylic Oxidations. European Journal of Organic Chemistry, 2013, 2013, 1471-1478.	2.4	19
140	Molecular Docking Studies of Royleanone Diterpenoids from <i>Plectranthus</i> spp. as P-Glycoprotein Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 839-845.	2.8	19
141	Chitin-glucan complex – Based biopolymeric structures using biocompatible ionic liquids. Carbohydrate Polymers, 2020, 247, 116679.	10.2	19
142	Solvent-free synthesis of melamines under microwave irradiation. Green Chemistry, 2004, 6, 183.	9.0	18
143	Ionic Acylating Agents for the Enzymatic Resolution of <i>sec</i> â€Alcohols in Ionic Liquids. European Journal of Organic Chemistry, 2010, 2010, 6938-6943.	2.4	18
144	Solubility of carbon dioxide in ammonium based CO2-induced ionic liquids. Fluid Phase Equilibria, 2013, 354, 19-23.	2.5	18

#	Article	IF	CITATIONS
145	NHC catalysed direct addition of HMF to diazo compounds: synthesis of acyl hydrazones with antitumor activity. RSC Advances, 2014, 4, 29352-29356.	3.6	18
146	Direct Conversion of Activated 5â€Hydroxymethylfurfural into Î'â€Lactoneâ€Fused Cyclopentenones. ChemSusChem, 2019, 12, 420-425.	6.8	18
147	Studies on the Transformation of Azido-Group to N-(t-Butoxycarbonyl)amino Group <i>via</i> Staudinger Reaction. Synthetic Communications, 1998, 28, 261-276.	2.1	17
148	New low viscous cholinium-based magnetic ionic liquids. New Journal of Chemistry, 2016, 40, 3124-3129.	2.8	17
149	Integrated desulfurization of diesel by combination of metal-free oxidation and product removal by molecularly imprinted polymers. RSC Advances, 2014, 4, 54948-54952.	3.6	16
150	Synthesis of a Biologically Active Oxazol-5-(4H)-one via an Erlenmeyer–Plöchl Reaction. Journal of Chemical Education, 2015, 92, 1543-1546.	2.3	16
151	Effect of water activity on carbon dioxide transport in cholinium-based ionic liquids with carbonic anhydrase. Separation and Purification Technology, 2016, 168, 74-82.	7.9	16
152	Ring Opening of 6â€AzabicycloÂ[3.1.0]hexâ€3â€enâ€2â€ols in Water under Mild Conditions. European Journal of Organic Chemistry, 2016, 2016, 2048-2053.	f 2.4	16
153	Bioconversion of alkaloids to high-value chemicals: Comparative analysis of newly isolated lupanine degrading strains. Chemosphere, 2018, 193, 50-59.	8.2	16
154	Phenotypic screening identifies a new oxazolone inhibitor of necroptosis and neuroinflammation. Cell Death Discovery, 2018, 4, 10.	4.7	16
155	Synthesis of substituted pyrrolidines by sequential radical cyclization and N-acyliminium ion reactions. Tetrahedron Letters, 1999, 40, 9189-9193.	1.4	15
156	Stereoselective azide introduction during 1,2-sulfur migration in \hat{l}_{\pm} -hydroxyalkyldithioacetals. Tetrahedron, 1999, 55, 801-814.	1.9	15
157	Sharpless Asymmetric Dihydroxylation of Olefins in WaterSurfactant Media with Recycling of the Catalytic System by Membrane Nanofiltration. Advanced Synthesis and Catalysis, 2008, 350, 2086-2098.	4.3	15
158	A 1,3,5-triazine based polymer as a nonlinear near-infrared antenna for two-photon activated volumetric optical memory devices. Journal of Materials Chemistry C, 2015, 3, 10775-10782.	5.5	15
159	Magnetic modulation of the transport of organophilic solutes through Supported Magnetic Ionic Liquid Membranes. Journal of Membrane Science, 2016, 505, 36-43.	8.2	15
160	Oleuropein: A Valuable Bioâ€Renewable Synthetic Building Block. European Journal of Organic Chemistry, 2018, 2018, 581-589.	2.4	15
161	Synthesis of 4-aryl-butylamine Fluorescent Probes. Journal of Chemical Research, 2002, 2002, 584-586.	1.3	14
162	Intramolecular Câ€"H insertion catalyzed by dirhodium(II) complexes using CO ₂ as the reaction media. Green Chemistry Letters and Reviews, 2012, 5, 211-240.	4.7	14

#	Article	IF	CITATIONS
163	Electrospinning of Ion Jelly fibers. Materials Letters, 2012, 83, 161-164.	2.6	14
164	Hydraulic pressures generated in Magnetic Ionic Liquids by paramagnetic fluid/air interfaces inside of uniform tangential magnetic fields. Journal of Colloid and Interface Science, 2014, 428, 16-23.	9.4	14
165	Photochromism of 7-(N,N-diethylamino)-4′-hydroxyflavylium in a water–ionic liquid biphasic system. Chemical Communications, 2007, , 1608-1610.	4.1	13
166	Racemic resolution of propranolol in membrane contactors: Modelling and process optimisation. Journal of Membrane Science, 2007, 305, 203-214.	8.2	13
167	Water as efficient medium for mild decarbonylation of tertiary aldehydes. Tetrahedron Letters, 2011, 52, 2803-2807.	1.4	13
168	Isolation, analytical quantification and seasonal variation of labdanolic acid from the Portuguese-grown Cistus ladaniferus. Industrial Crops and Products, 2014, 60, 226-232.	5.2	13
169	Synthesis, antimicrobial activity and cytotoxic investigation of novel trifluoromethylated tetrazolo[1,5-a]pyrimidines. Medicinal Chemistry Research, 2017, 26, 640-649.	2.4	13
170	A study on lupin beans process wastewater nanofiltration treatment and lupanine recovery. Journal of Cleaner Production, 2020, 277, 123349.	9.3	13
171	Preparation of non-fused heterocycles in zeolites and mesoporous materials. Journal of Molecular Catalysis A, 2005, 242, 195-217.	4.8	12
172	Novel Malachite Green- and Rhodamine B-labeled cationic chain transfer agents for RAFT polymerization. Polymer, 2011, 52, 5933-5946.	3.8	12
173	Excited-State Proton Transfer of Fluorescein Anion as an Ionic Liquid Component. Journal of Physical Chemistry B, 2013, 117, 14108-14114.	2.6	12
174	An emerging platform from renewable resources: selection guidelines for human exposure of furfural-related compounds. Toxicology Research, 2014, 3, 311-314.	2.1	12
175	Preparation of activated charcoal from Acrocomia aculeata for purification of pretreated crude glycerol. Biomass Conversion and Biorefinery, 2022, 12, 2441-2449.	4.6	12
176	Studies on the Preparation of 4-Ethoxyalkyliden and 4-Aminoalkyliden-5(4H)-oxazolones. Synthetic Communications, 2003, 33, 1285-1299.	2.1	11
177	Imide–amide rearrangement of oxazaphosphorimidates: studies towards the application to the synthesis of chiral Lewis bases. Tetrahedron, 2004, 60, 11933-11949.	1.9	11
178	Thermal and photochemical properties of 4′-hydroxyflavylium in water–ionic liquid biphasic systems. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 168, 185-189.	3.9	11
179	Simulating the Two Phase Flow on Column Trays. Chemical Engineering Research and Design, 2005, 83, 1410-1424.	5.6	11
180	Separation of secondary alcohols via enzymatic kinetic resolution using fatty esters as reusable acylating agents. Tetrahedron: Asymmetry, 2010, 21, 952-956.	1.8	11

#	Article	IF	CITATIONS
181	Enzymatic Resolution and Separation of Secondary Alcohols Based on Fatty Esters as Acylating Agents. Journal of Chemical Education, 2010, 87, 423-425.	2.3	11
182	Efficient Continuous Production of the Biofuel Additive 5â€(t―Butoxymethyl) Furfural from 5â€Hydroxymethylfurfural. Energy Technology, 2019, 7, 1900780.	3.8	11
183	Rediscovering aminal chemistry: copper(<scp>ii</scp>) catalysed formation under mild conditions. Green Chemistry, 2020, 22, 7484-7490.	9.0	11
184	Asymmetric hydrolysis of a meso-diester using pig liver esterase immobilised in hollow fibre ultrafiltration membrane. Tetrahedron: Asymmetry, 2000, 11, 929-934.	1.8	10
185	Oxidation of Cyclohexene to <i>trans</i> -1,2-Cyclohexanediol Promoted by <i>p</i> -Toluenesulfonic Acid without Organic Solvents. Journal of Chemical Education, 2011, 88, 1002-1003.	2.3	10
186	The influence of nanoparticle architecture on latex film formation and healing properties. Journal of Colloid and Interface Science, 2012, 368, 21-33.	9.4	10
187	Protein stabilization with a dipeptideâ€mimic triazineâ€scaffolded synthetic affinity ligand. Journal of Molecular Recognition, 2013, 26, 104-112.	2.1	10
188	Targeting the Erythrocytic and Liver Stages of Malaria Parasites with ⟨i⟩s⟨ i⟩â€Triazineâ€Based Hybrids. ChemMedChem, 2015, 10, 883-890.	3.2	10
189	Studies on the dynamic resolution of Crizotinib intermediate. Bioorganic and Medicinal Chemistry, 2018, 26, 1333-1337.	3.0	10
190	PEG600-carboxylates as acylating agents for the continuous enzymatic kinetic resolution of alcohols and amines. Molecular Catalysis, 2018, 459, 89-96.	2.0	10
191	Synthesis of silacyclopent-2-en-4-ols <i>via</i> intramolecular [2 + 2] photocycloaddition of benzoyl(allyl)silanes. Organic Chemistry Frontiers, 2019, 6, 3793-3798.	4.5	10
192	Synthesis of 5-(Hydroxymethyl)furfural (HMF). Organic Syntheses, 0, 93, 29-36.	1.0	10
193	Observations on the selective deoxygenation of epoxides to olefins with chlorotrimethylsilane and zinc Tetrahedron Letters, 1992, 33, 3367-3370.	1.4	9
194	Imide-Amide Rearrangement of Cyclic Phosphorimidates: A Mechanistic Study. Chemistry - A European Journal, 2001, 7, 1455-1467.	3.3	9
195	Enantioselective Hydrolysis of ameso-Diester Using Pig Liver Esterase in a Two-Phase Stirred Tank Reactor. Industrial & Stirred Tank Reactor. Industrial & S	3.7	9
196	Asymmetric Aldol Reaction Induced by Chiral Auxiliary. Journal of Chemical Education, 2006, 83, 1333.	2.3	9
197	Short synthesis of methylenecyclopentenones by intermolecular Pauson–Khand reaction of allyl thiourea. Tetrahedron Letters, 2010, 51, 3356-3359.	1.4	9
198	An efficient and simple Morita–Baylis–Hillman reaction based on the N-methylpyrrolidine–Ba(OH)2 catalytic system. Tetrahedron, 2011, 67, 2562-2569.	1.9	9

#	Article	IF	Citations
199	Biomassâ€Based and Oxidantâ€Free Preparation of Hydroquinone from Quinic Acid. European Journal of Organic Chemistry, 2016, 2016, 3856-3861.	2.4	9
200	¹ H NMR Relaxometry and Diffusometry Study of Magnetic and Nonmagnetic Ionic Liquid-Based Solutions: Cosolvent and Temperature Effects. Journal of Physical Chemistry B, 2017, 121, 11472-11484.	2.6	9
201	Oxidation of 5-Chloromethylfurfural (CMF) to 2,5-Diformylfuran (DFF). Molecules, 2017, 22, 329.	3.8	9
202	Acetylcholinesterase Choline-Based Ionic Liquid Inhibitors: In Vitro and in Silico Molecular Docking Studies. ACS Omega, 2018, 3, 17145-17154.	3.5	9
203	Valorization of Oleuropein via Tunable Acidâ€Promoted Methanolysis. ChemSusChem, 2018, 11, 2300-2305.	6.8	9
204	Royleanone Derivatives From Plectranthus spp. as a Novel Class of P-Glycoprotein Inhibitors. Frontiers in Pharmacology, 2020, 11, 557789.	3.5	9
205	Silica-Supported Copper for the Preparation of <i>trans-</i> Continuous Flow Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 16038-16043.	6.7	9
206	Functionalized Cyclopentenes via the Formal [4+1] Cycloaddition of Photogenerated Siloxycarbenes from Acyl Silanes. Journal of Organic Chemistry, 2022, 87, 8910-8920.	3.2	9
207	Stereocontrolled synthesis of the 4-hydroxy-5-methyl-2(3H)-dihydrofuranone isomers. Tetrahedron, 1993, 49, 4283-4292.	1.9	8
208	Asymmetric synthesis of functionalised cyclopentenones via organocatalysed rearrangement and enzymatic resolution of pyranones. Tetrahedron Letters, 2009, 50, 3706-3708.	1.4	8
209	Short synthesis of the natural product $3\hat{l}^2$ -hydroxy-labd-8(17)-en-15-oic acid via microbial transformation of labdanolic acid. Phytochemistry Letters, 2013, 6, 165-169.	1.2	8
210	Development, optimization, and validation of a novel extraction procedure for the removal of opiates from human hair's surface. Drug Testing and Analysis, 2015, 7, 385-392.	2.6	8
211	Securing a furanâ€based biorefinery: disclosing the genetic basis of the degradation of hydroxymethylfurfural and its derivatives in the model fungus Aspergillus nidulans. Microbial Biotechnology, 2020, 13, 1983-1996.	4.2	8
212	Resolution of alkaloid racemate: a novel microbial approach for the production of enantiopure lupanine via industrial wastewater valorization. Microbial Cell Factories, 2020, 19, 67.	4.0	8
213	Discovery of a Necroptosis Inhibitor Improving Dopaminergic Neuronal Loss after MPTP Exposure in Mice. International Journal of Molecular Sciences, 2021, 22, 5289.	4.1	8
214	Synthesis of Tris(N,N-dimethylthiocarbamoyl)-1,1,1-tris-(methylaminomethyl)ethane and Its Application as Ligand for Pauson–Khand Reaction. Synthetic Communications, 2008, 38, 2761-2767.	2.1	7
215	Cyclization of Diazoacetamides Catalyzed by N-Heterocyclic Carbene Dirhodium(II) Complexes. Synthesis, 2009, 2009, 3519-3526.	2.3	7
216	Shear-induced lamellar ionic liquid-crystal foam. Liquid Crystals, 2010, 37, 377-382.	2.2	7

#	Article	IF	Citations
217	Solubility and phase behavior of binary systems containing salts based on transitional metals. Journal of Chemical Thermodynamics, 2013, 63, 123-127.	2.0	7
218	Optimization of protein loaded PLGA nanoparticle manufacturing parameters following a quality-by-design approach. RSC Advances, 2016, 6, 104502-104512.	3.6	7
219	Contactless decontamination of hair samples: cannabinoids. Drug Testing and Analysis, 2017, 9, 282-288.	2.6	7
220	Activity to Breast Cancer Cell Lines of Different Malignancy and Predicted Interaction with Protein Kinase C Isoforms of Royleanones. International Journal of Molecular Sciences, 2020, 21, 3671.	4.1	7
221	Semi-continuous and continuous processes for enantiomeric separation. Green Chemistry, 2022, 24, 4328-4362.	9.0	7
222	A study on the intramolecular catalytic aldol cyclodehydration of 3,4-disubstituted 1,6-dialdehydes. Journal of Molecular Catalysis A, 2005, 234, 159-167.	4.8	6
223	Opportunities for Membrane Separation Processes Using Ionic Liquids. ACS Symposium Series, 2005, , 97-110.	0.5	6
224	Membrane Processes. , 2006, , 251-289.		6
225	Tetra-μ-acetato-bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]rhodium(II)}(⟨i⟩Rh⟨ i⟩â€"⟨i⟩Rh⟨ i⟩) tetrahydrofuran tetrasolvate. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, m345-m348.	0.4	6
226	Solvent compatible polymer functionalization with adenine, a DNA base, for API degenotoxification: Preparation and characterization. Separation and Purification Technology, 2017, 179, 438-448.	7.9	6
227	Developments in the Reactivity of 2-Methylimidazolium Salts. Journal of Organic Chemistry, 2017, 82, 6232-6241.	3.2	6
228	Synthesis, Cytotoxicity Evaluation in Human Cell Lines and in Vitro DNA Interaction of a Heteroâ€Arylideneâ€9(10 <i>H</i>)â€Anthrone. European Journal of Organic Chemistry, 2018, 2018, 545-549.	2.4	6
229	Solventâ€Free Catalytic Selfâ€Etherification of 5â€Hydroxymethyl Furfural. ChemCatChem, 2018, 10, 5406-5409.	3.7	6
230	Process Intensification for the Synthesis of 6-Allyl-6-azabicyclo[3.1.0]hex-3-en-2-ol from 1-Allylpyridinium Salt Using a Continuous UV-Light Photoflow Approach. Methods and Protocols, 2019, 2, 67.	2.0	6
231	Palladium-catalyzed allylic substitution between C-based nucleophiles and 6-azabicyclo[3.1.0]-hex-3-en-2-oxy derivatives: A new selectivity paradigm. Tetrahedron, 2020, 76, 131182.	1.9	6
232	Dissolution and Transformation of Carbohydrates in Ionic Liquids. Current Organic Synthesis, 2011, 8, 840-860.	1.3	6
233	A PRACTICAL METHOD FOR THE ACYLATION OF 2-IMIDAZOLIDINONE AND 2-OXAZOLIDINONE CHIRAL AUXILIARIES WITH 2- BROMOACYL HALIDES. Synthetic Communications, 2001, 31, 3241-3254.	2.1	5
234	PEG600-Carboxylates as Efficient Reusable Reaction Media and Acylating Agents for the Resolution ofsec-Alcohols. ChemPlusChem, 2015, 80, 42-46.	2.8	5

#	Article	lF	Citations
235	Synthesis of trans-4,5-Bis-dibenzylaminocyclopent-2-enone from Furfural Catalyzed by ErCl3·6H2O. Journal of Chemical Education, 2017, 94, 1587-1589.	2.3	5
236	Proteomic Insights on the Metabolism of Penicillium janczewskii during the Biotransformation of the Plant Terpenoid Labdanolic Acid. Frontiers in Bioengineering and Biotechnology, 2017, 5, 45.	4.1	5
237	Mimicking DNA alkylation: Removing genotoxin impurities from API streams with a solvent stable polybenzimidazole-adenine polymer. Reactive and Functional Polymers, 2018, 131, 258-265.	4.1	5
238	Polybenzimidazole for Active Pharmaceutical Ingredient Purification: The Mometasone Furoate Case Study. Industrial & Engineering Chemistry Research, 2019, 58, 10524-10532.	3.7	5
239	Battling Glioblastoma: A Novel Tyrosine Kinase Inhibitor with Multi-Dimensional Anti-Tumor Effect. Cells, 2019, 8, 1624.	4.1	5
240	Synthesis and reactivity/stability study of double-functionalizable strained <i>trans</i> -cyclooctenes for tetrazine bioorthogonal reactions. Pure and Applied Chemistry, 2020, 92, 15-23.	1.9	5
241	Functionalized Cyclopentenones and an Oxime Ether as Antimicrobial Agents. ChemMedChem, 2021, 16, 2781-2785.	3.2	5
242	Tuning the 1H NMR Paramagnetic Relaxation Enhancement and Local Order of [Aliquat]+-Based Systems Mixed with DMSO. International Journal of Molecular Sciences, 2021, 22, 706.	4.1	5
243	New promoters for the molybdenum hexacarbonyl- mediated Pauson–Khand reaction. Arkivoc, 2007, 2007, 127-141.	0.5	5
244	Novel acid catalysed 1,4-addition-type ring-opening polymerisation of cyclic phosphorimidates. Tetrahedron Letters, 1999, 40, 137-140.	1.4	4
245	Separations Using Superheated Water. , 2006, , 323-339.		4
246	How foam-like is the shear-induced lamellar phase of an ionic liquid crystal?. Philosophical Magazine Letters, 2008, 88, 741-747.	1.2	4
247	Enzymatic Kinetic Resolution of Secondary Alcohols Using an Ionic Anhydride Generated Inâ€Situ. ChemSusChem, 2017, 10, 296-302.	6.8	4
248	Green Chemistry and Environmentally Friendly Technologies. , 2006, , 1-18.		3
249	Solventless Reactions (SLR). , 2006, , 53-87.		3
250	Fluid Extraction., 2006,, 207-249.		3
251	Supported acid-catalyzed flash vacuum thermolysis on the valorisation of labdanum resin. Biomass and Bioenergy, 2014, 71, 363-369.	5.7	3
252	CHAPTER 2. The Dissolution of Biomass in Ionic Liquids Towards Pre-Treatment Approach. RSC Green Chemistry, 2015, , 38-64.	0.1	3

#	Article	IF	CITATIONS
253	Preparation of Thioaminals in Water. Molecules, 2022, 27, 1673.	3.8	3
254	Inserção C-H de carbenóides de ródio em água e reutilização do catalisador. Quimica Nova, 2007, 30, 1768-1772.	0.3	2
255	Toxicological Evaluation of Ionic Liquids. ACS Symposium Series, 2010, , 135-144.	0.5	2
256	Efficient Tandem Morita–Baylis–Hillman/Double Crossâ€Aldol Reaction between Cyclic Enones and Formaldehyde Promoted by <i>N</i> â€Methylpyrrolidine. European Journal of Organic Chemistry, 2011, 2011, 2372-2379.	2.4	2
257	Metal-Catalyzed Oxidation of C–X (X = S, O) in Ionic Liquids. Topics in Organometallic Chemistry, 2013, , 163-184.	0.7	2
258	Enhanced photoconversion of 1,2-bis(2-methyl-1-benzothiophene-3-yl)perfluorocyclopentene in ionic liquid solutions. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 44-50.	3.9	2
259	Synthesizing a Berberine Derivative and Evaluating Antimicrobial Activity To Reinforce with Students the Potential Significance of Small Chemical Structure Changes for Biological Systems. Journal of Chemical Education, 2018, 95, 492-495.	2.3	2
260	Tandem Thioâ€Michael Addition/Remote Lactone Activation of 5â€Hydroxymethylfurfuralâ€Derived Î'â€Lactoneâ€Fused Cyclopentenones. ChemSusChem, 2022, , e202102204.	6.8	2
261	Greener Strategy for Lupanine Purification from Lupin Bean Wastewaters Using a Molecularly Imprinted Polymer. ACS Applied Materials & Samp; Interfaces, 2022, , .	8.0	2
262	Catalytic Asymmetric Dihydroxylation of Olefins Using a Recoverable and Reusable OsO42- in Ionic Liquid [bmim][PF6] ChemInform, 2003, 34, no.	0.0	1
263	An Expedient Synthesis of Cationic Rhodamine Fluorescent Probes Suitable for Conjugation to Amino Acids and Peptides. Synthesis, 2003, 2003, 2647-2654.	2.3	1
264	Rh(II)-Catalyzed Intramolecular C—H Insertion of Diazo Substrates in Water: A Simple and Efficient Approach to Catalyst Reuse ChemInform, 2005, 36, no.	0.0	1
265	Combinatorial Chemistry on Solid Phases. , 2006, , 89-102.		1
266	Green Enantiomeric Separations by Inclusion Complexation. , 2006, , 155-185.		1
267	Capture of Opiates by Ionic Liquids. Journal of Solution Chemistry, 2015, 44, 440-453.	1.2	1
268	(1R,4S,5S)-5-((3-Hydroxypropyl)amino)-4-((1-methyl-1H-tetrazol-5-yl)thio)cyclopent-2-en-1-ol. MolBank, 2021, 2021, M1199.	0.5	1
269	Sustainable chemical and biological technologies for the production of enantiopure added-value molecules in biorefineries., 2022,, 295-335.		1
270	lonic Liquid as an Efficient Promoting Medium for Two-Phase Nucleophilic Displacement Reactions ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
271	Studies on the Preparation of 4-Ethoxyalkyliden and 4-Aminoalkyliden-5(4H)-oxazolones ChemInform, 2003, 34, no.	0.0	O
272	Dirhodium(II)-Catalyzed Câ€"H Insertion on α-Diazo-α-phosphono-acetamides in an Ionic Liquid ChemInform, 2003, 34, no.	0.0	0
273	Microwave-Accelerated Facile Synthesis of Fused Polynuclear Hydrocarbons in Dry Media by Intramolecular Friedel—Crafts Alkylation ChemInform, 2004, 35, no.	0.0	0
274	Recent Advances in Chiral Resolution Through Membrane-Based Approaches. ChemInform, 2005, 36, no.	0.0	0
275	A Direct Intramolecular Asymmetric Catalytic Aldol Cyclodehydration of meso-3,4-Disubstituted-1,6-dialdehydes ChemInform, 2005, 36, no.	0.0	0
276	Clean Osmium-Catalyzed Asymmetric Dihydroxylation of Olefins in Ionic Liquids and Supercritical CO2 Product Recovery ChemInform, 2005, 36, no.	0.0	0
277	Sustainable Development and Regulation. , 2006, , 19-31.		0
278	Microreactor Technology for Organic Synthesis. , 2006, , 33-51.		0
279	Chromatography: A Non-Analytical View. , 2006, , 187-205.		0
280	Overview of "Green―Separation Processes. , 2006, , 103-126.		0
281	Nanostructures in Separation. , 2006, , 291-322.		0
282	Organocatalyzed Asymmetric Michael Reaction in Ionic Liquidsâ€"Carbon Dioxide. ACS Symposium Series, 2007, , 235-245.	0.5	0
283	Response to the letter to the editor Reply to Restolho et al. "Contactless decontamination of hair samples: cannabinoids―by Moosmann and Auw¤er. Drug Testing and Analysis, 2017, 9, 290-292.	2.6	0
284	Frontispiece: Synthesis and Applications of Stenhouse Salts and Derivatives. Chemistry - A European Journal, 2018, 24, .	3.3	0
285	More Sustainable Synthetic Organic Chemistry Approaches Based on Catalyst Reuse., 2007,, 103-120.		0
286	One-Pot Transformation of Salicylaldehydes to Spiroepoxydienones ⟨i⟩via⟨ i⟩ the Adler–Becker Reaction in a Continuous Flow. ACS Omega, 2022, 7, 11570-11577.	3.5	0
287	Reactivity of trifluoromethyl-tetrazolo[1,5-a]pyrimidines in click chemistry and hydrogenation. Journal of Fluorine Chemistry, 2022, 257-258, 109973.	1.7	0
288	Stereoselective Synthesis and Isolation of $(\hat{A}\pm)$ -trans,trans-Cyclohexane-1,2,4,5-tetraol. AppliedChem, 2022, 2, 142-148.	1.0	0