Andrew P Goodwin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5881581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation. Journal of the American Chemical Society, 2009, 131, 4783-4787.	6.6	548
2	Synthetic Micelle Sensitive to IR Light via a Two-Photon Process. Journal of the American Chemical Society, 2005, 127, 9952-9953.	6.6	344
3	Acetals as pH-Sensitive Linkages for Drug Delivery. Bioconjugate Chemistry, 2004, 15, 1254-1263.	1.8	280
4	Nanoparticles for cancer imaging: The good, the bad, and the promise. Nano Today, 2013, 8, 454-460.	6.2	140
5	DNAâ€Assembled Coreâ€Satellite Upconvertingâ€Metal–Organic Framework Nanoparticle Superstructures for Efficient Photodynamic Therapy. Small, 2017, 13, 1700504.	5.2	114
6	Rapid, Efficient Synthesis of Heterobifunctional Biodegradable Dendrimers. Journal of the American Chemical Society, 2007, 129, 6994-6995.	6.6	112
7	Two-photon degradable supramolecular assemblies of linear-dendritic copolymers. Chemical Communications, 2007, , 2081-2082.	2.2	91
8	Aptamerâ€Crosslinked Microbubbles: Smart Contrast Agents for Thrombinâ€Activated Ultrasound Imaging. Advanced Materials, 2012, 24, 6010-6016.	11.1	68
9	Stable Encapsulation of Air in Mesoporous Silica Nanoparticles: Fluorocarbonâ€Free Nanoscale Ultrasound Contrast Agents. Advanced Healthcare Materials, 2016, 5, 1290-1298.	3.9	61
10	Understanding Acoustic Cavitation Initiation by Porous Nanoparticles: Toward Nanoscale Agents for Ultrasound Imaging and Therapy. Chemistry of Materials, 2016, 28, 5962-5972.	3.2	56
11	Self-assembled gold nanostar–NaYF ₄ :Yb/Er clusters for multimodal imaging, photothermal and photodynamic therapy. Journal of Materials Chemistry B, 2016, 4, 4455-4461.	2.9	50
12	Nanoparticle-Mediated Acoustic Cavitation Enables High Intensity Focused Ultrasound Ablation Without Tissue Heating. ACS Applied Materials & Interfaces, 2018, 10, 36786-36795.	4.0	48
13	Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics, 2019, 9, 2572-2594.	4.6	42
14	Nanoparticles Formed by Acoustic Destruction of Microbubbles and Their Utilization for Imaging and Effects on Therapy by High Intensity Focused Ultrasound. Theranostics, 2017, 7, 694-702.	4.6	36
15	TiO ₂ -Capped Gold Nanorods for Plasmon-Enhanced Production of Reactive Oxygen Species and Photothermal Delivery of Chemotherapeutic Agents. ACS Applied Materials & Interfaces, 2018, 10, 27965-27971.	4.0	36
16	DNA Hybridizationâ€Mediated Liposome Fusion at the Aqueous Liquid Crystal Interface. Advanced Functional Materials, 2014, 24, 3206-3212.	7.8	32
17	Phospholipid Capped Mesoporous Nanoparticles for Targeted High Intensity Focused Ultrasound Ablation. Advanced Healthcare Materials, 2017, 6, 1700514.	3.9	31
18	Mechanochemical Reaction Cascade for Sensitive Detection of Covalent Bond Breakage in Hydrogels. Chemistry of Materials, 2014, 26, 6771-6776	3.2	29

ANDREW P GOODWIN

#	Article	IF	CITATIONS
19	DNA oated Microbubbles with Biochemically Tunable Ultrasound Contrast Activity. Advanced Materials, 2011, 23, 4908-4912.	11.1	27
20	Multicatalytic, Light-Driven Upgrading of Butanol to 2-Ethylhexenal and Hydrogen under Mild Aqueous Conditions. ACS Catalysis, 2017, 7, 568-572.	5.5	27
21	Catalytic Upgrading in Bacteria-Compatible Conditions via a Biocompatible Aldol Condensation. ACS Sustainable Chemistry and Engineering, 2016, 4, 671-675.	3.2	26
22	InÂvivo ultrasound visualization of non-occlusive blood clots with thrombin-sensitive contrast agents. Biomaterials, 2013, 34, 9559-9565.	5.7	25
23	Phase behavior of mixed lipid monolayers on perfluorocarbon nanoemulsions and its effect on acoustic contrast. RSC Advances, 2016, 6, 111318-111325.	1.7	24
24	Alternating Sulfone Copolymers Depolymerize in Response to Both Chemical and Mechanical Stimuli. ACS Macro Letters, 2015, 4, 907-911.	2.3	23
25	Contact Line Pinning Is Not Required for Nanobubble Stability on Copolymer Brushes. Journal of Physical Chemistry Letters, 2018, 9, 4239-4244.	2.1	23
26	Mutually-Reactive, Fluorogenic Hydrocyanine/Quinone Reporter Pairs for In-Solution Biosensing via Nanodroplet Association. ACS Applied Materials & Interfaces, 2016, 8, 802-808.	4.0	18
27	Facile one-pot synthesis of polymer–phospholipid composite microbubbles with enhanced drug loading capacity for ultrasound-triggered therapy. Soft Matter, 2011, 7, 1656.	1.2	17
28	Depolymerizable Poly(<i>O</i> -vinyl carbamate- <i>alt</i> -sulfones) as Customizable Macromolecular Scaffolds for Mucosal Drug Delivery. ACS Macro Letters, 2016, 5, 636-640.	2.3	17
29	Nongenetic Bioconjugation Strategies for Modifying Cell Membranes and Membrane Proteins: A Review. Bioconjugate Chemistry, 2020, 31, 2465-2475.	1.8	17
30	Light-Driven Catalytic Upgrading of Butanol in a Biohybrid Photoelectrochemical System. ACS Sustainable Chemistry and Engineering, 2017, 5, 8199-8204.	3.2	16
31	Temperature-Responsive Hydrophobic Silica Nanoparticle Ultrasound Contrast Agents Directed by Phospholipid Phase Behavior. ACS Applied Materials & Interfaces, 2019, 11, 15233-15240.	4.0	16
32	Click Nucleic Acid Mediated Loading of Prodrug Activating Enzymes in PEG–PLGA Nanoparticles for Combination Chemotherapy. Biomacromolecules, 2019, 20, 1683-1690.	2.6	14
33	Direct conjugation of DNA to quantum dots for scalable assembly of photoactive thin films. RSC Advances, 2014, 4, 8064.	1.7	13
34	Selective Vaporization of Superheated Nanodroplets for Rapid, Sensitive, Acoustic Biosensing. Advanced Healthcare Materials, 2015, 4, 1790-1795.	3.9	13
35	Anti-EGFR Affibodies with Site-Specific Photo-Cross-Linker Incorporation Show Both Directed Target-Specific Photoconjugation and Increased Retention in Tumors. Journal of the American Chemical Society, 2018, 140, 11820-11828.	6.6	13
36	Phospholipid-Coated Hydrophobic Mesoporous Silica Nanoparticles Enhance Thrombectomy by High-Intensity Focused Ultrasound with Low Production of Embolism-Inducing Clot Debris. ACS Applied Materials & Interfaces, 2019, 11, 36324-36332.	4.0	13

#	Article	IF	CITATIONS
37	Stimulus–responsive ultrasound contrast agents for clinical imaging: motivations, demonstrations, and future directions. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 111-123.	3.3	11
38	Imparting the unique properties of DNA into complex material architectures and functions. Materials Today, 2013, 16, 290-296.	8.3	10
39	Polyacrylamide Hydrogels Produce Hydrogen Peroxide from Osmotic Swelling in Aqueous Media. Biomacromolecules, 2018, 19, 3421-3426.	2.6	10
40	The Effect of Container Surface Passivation on Aggregation of Intravenous Immunoglobulin Induced by Mechanical Shock. Biotechnology Journal, 2020, 15, e2000096.	1.8	9
41	Surface-Templated Nanobubbles Protect Proteins from Surface-Mediated Denaturation. Journal of Physical Chemistry Letters, 2019, 10, 2641-2647.	2.1	8
42	Investigating Protein–Nanocrystal Interactions for Photodriven Activity. ACS Applied Bio Materials, 2020, 3, 1026-1035.	2.3	8
43	On-Demand Droplet Fusion: A Strategy for Stimulus-Responsive Biosensing in Solution. Langmuir, 2014, 30, 12321-12327.	1.6	7
44	Conversion of Ethanol to 2-Ethylhexenal at Ambient Conditions Using Tandem, Biphasic Catalysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 10483-10489.	3.2	6
45	Design and application of stimulus-responsive droplets and bubbles stabilized by phospholipid monolayers. Current Opinion in Colloid and Interface Science, 2019, 40, 14-24.	3.4	6
46	Enzymes Photo-Cross-Linked to Live Cell Receptors Retain Activity and EGFR Inhibition after Both Internalization and Recycling. Bioconjugate Chemistry, 2020, 31, 104-112.	1.8	6
47	Insulin Fibril Formation Caused by Mechanical Shock and Cavitation. Journal of Physical Chemistry B, 2021, 125, 8021-8027.	1.2	6
48	Mechanochemistry Activated Covalent Conjugation Reactions in Soft Hydrogels Induced by Interfacial Failure. ACS Applied Materials & Interfaces, 2021, 13, 1486-1492.	4.0	6
49	Solar Photocatalytic Phenol Polymerization and Hydrogen Generation for Flocculation of Wastewater Impurities. ACS Applied Polymer Materials, 2019, 1, 1451-1457.	2.0	4
50	Hydrophobically Modified Silica-Coated Gold Nanorods for Generating Nonlinear Photoacoustic Signals. ACS Applied Nano Materials, 2021, 4, 12073-12082.	2.4	3
51	Investigating the use of conducting oligomers and redox molecules in CdS–MoFeP biohybrids. Nanoscale Advances, 2021, 3, 1392-1396.	2.2	2
52	Generation of 3D cellular spheroids using DNA modified cell receptors and programmable DNA interactions. Biomaterials Science, 2021, 9, 7911-7920.	2.6	2
53	Selfâ€assembly and reassembly of fiberâ€forming dipeptides for pHâ€triggered DNA delivery. Journal of Polymer Science Part A, 2015, 53, 183-187	2.5	1
54	Hydrogel Coatings on Container Surfaces Reduce Protein Aggregation Caused by Mechanical Stress and Cavitation. ACS Applied Bio Materials, 2021, 4, 6946-6953.	2.3	1

#	Article	IF	CITATIONS
55	Effect of Covalent Photoconjugation of Affibodies to Epidermal Growth Factor Receptor (EGFR) on Cellular Quiescence. Biotechnology and Bioengineering, 2022, 119, 187-198.	1.7	1