List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5881553/publications.pdf Version: 2024-02-01

FDIK A IMEL

#	Article	IF	CITATIONS
1	Sustained Efficacy and Safety of Burosumab, a Monoclonal Antibody to FGF23, in Children With X-Linked Hypophosphatemia. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 813-824.	1.8	36
2	Crinecerfont Lowers Elevated Hormone Markers in Adults With 21-Hydroxylase Deficiency Congenital Adrenal Hyperplasia. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 801-812.	1.8	19
3	Musculoskeletal Features in Adults With X-linked Hypophosphatemia: An Analysis of Clinical Trial and Survey Data. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1249-e1262.	1.8	18
4	Health Care Transition From Pediatric- to Adult-Focused Care in X-linked Hypophosphatemia: Expert Consensus. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 599-613.	1.8	11
5	Novel PHEX gene locusâ€specific database: Comprehensive characterization of vast number of variants associated with Xâ€linked hypophosphatemia (XLH). Human Mutation, 2022, 43, 143-157.	1.1	18
6	Unusual Cortical Phenotype After Hematopoietic Stem Cell Transplantation in a Patient With Osteopetrosis. JBMR Plus, 2022, 6, .	1.3	1
7	Effect of Burosumab Compared With Conventional Therapy on Younger vs Older Children With X-linked Hypophosphatemia. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3241-e3253.	1.8	36
8	Congenital Conditions of Hypophosphatemia in Children. Calcified Tissue International, 2021, 108, 74-90.	1.5	16
9	Radiographic imaging, densitometry and disease severity in Autosomal dominant osteopetrosis type 2. Skeletal Radiology, 2021, 50, 903-913.	1.2	6
10	FGF23 as a drug target. , 2021, , 201-213.		0
11	Patient-Reported Outcomes from a Randomized, Active-Controlled, Open-Label, Phase 3 Trial of Burosumab Versus Conventional Therapy in Children with X-Linked Hypophosphatemia. Calcified Tissue International, 2021, 108, 622-633.	1.5	26
12	Healthcare Transition Preparation in X-Linked Hypophosphatemia. Journal of the Endocrine Society, 2021, 5, A261-A262.	0.1	0
13	Burosumab for Pediatric X-Linked Hypophosphatemia. Current Osteoporosis Reports, 2021, 19, 271-277.	1.5	10
14	Hypocalcemia in a 15 Year Old With New Onset Type 2 Diabetes Mellitus. Journal of the Endocrine Society, 2021, 5, A200-A200.	0.1	0
15	Tildacerfont in Adults With Classic Congenital Adrenal Hyperplasia: Results from Two Phase 2 Studies. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e4666-e4679.	1.8	21
16	Burosumab treatment in adults with X-linked hypophosphataemia: 96-week patient-reported outcomes and ambulatory function from a randomised phase 3 trial and open-label extension. RMD Open, 2021, 7, e001714.	1.8	26
17	Oral Iron Replacement Normalizes Fibroblast Growth Factor 23 in Ironâ€Deficient Patients With Autosomal Dominant Hypophosphatemic Rickets. Journal of Bone and Mineral Research, 2020, 35, 231-238.	3.1	32
18	Long-Term Follow-up of Hypophosphatemic Bone Disease Associated With Elemental Formula Use: Sustained Correction of Bone Disease After Formula Change or Phosphate Supplementation. Clinical Pediatrics, 2020, 59, 1080-1085.	0.4	6

#	Article	IF	CITATIONS
19	Enthesopathy, Osteoarthritis, and Mobility in X-linked Hypophosphatemia. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2649-e2651.	1.8	10
20	Sarcopenia, frailty and cachexia patients detected in a multisystem electronic health record database. BMC Musculoskeletal Disorders, 2020, 21, 508.	0.8	5
21	Characterizing patients initiating abaloparatide, teriparatide, or denosumab in a real-world setting: a US linked claims and EMR database analysis. Osteoporosis International, 2020, 31, 2413-2424.	1.3	2
22	Effects of Iron Isomaltoside vs Ferric Carboxymaltose on Hypophosphatemia in Iron-Deficiency Anemia. JAMA - Journal of the American Medical Association, 2020, 323, 432.	3.8	162
23	SUN-356 Burosumab Resulted in Greater Clinical Improvements Compared with Higher-dose Conventional Therapy in Children with X-linked Hypophosphatemia (XLH). Journal of the Endocrine Society, 2020, 4, .	0.1	0
24	The Lifelong Impact of X-Linked Hypophosphatemia: Results From a Burden of Disease Survey. Journal of the Endocrine Society, 2019, 3, 1321-1334.	0.1	129
25	Hyperparathyroidism and parathyroidectomy in X-linked hypophosphatemia patients. Bone, 2019, 127, 386-392.	1.4	30
26	Continued Beneficial Effects of Burosumab in Adults with X-Linked Hypophosphatemia: Results from a 24-Week Treatment Continuation Period After a 24-Week Double-Blind Placebo-Controlled Period. Calcified Tissue International, 2019, 105, 271-284.	1.5	102
27	Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet, The, 2019, 393, 2416-2427.	6.3	229
28	FGF23, Hypophosphatemia, and Emerging Treatments. JBMR Plus, 2019, 3, e10190.	1.3	34
29	Interferon Gamma-1b Does Not Increase Markers of Bone Resorption in Autosomal Dominant Osteopetrosis. Journal of Bone and Mineral Research, 2019, 34, 1436-1445.	3.1	16
30	Calcium and Phosphate. , 2019, , 257-282.		8
31	Pharmacological management of Xâ€ŀinked hypophosphataemia. British Journal of Clinical Pharmacology, 2019, 85, 1188-1198.	1.1	20
32	Efficacy and safety of burosumab in children aged 1–4 years with X-linked hypophosphataemia: a multicentre, open-label, phase 2 trial. Lancet Diabetes and Endocrinology,the, 2019, 7, 189-199.	5.5	115
33	FGF23 and Associated Disorders of Phosphate Wasting. Pediatric Endocrinology Reviews, 2019, 17, 17-34.	1.2	30
34	Prevalence of Nephrocalcinosis in Pseudohypoparathyroidism: Is Screening Necessary?. Journal of Pediatrics, 2018, 199, 263-266.	0.9	8
35	Genetic Variants Associated with Circulating Fibroblast Growth Factor 23. Journal of the American Society of Nephrology: JASN, 2018, 29, 2583-2592.	3.0	35
36	Burosumab Therapy in Children with X-Linked Hypophosphatemia. New England Journal of Medicine, 2018, 378, 1987-1998.	13.9	339

#	Article	IF	CITATIONS
37	Rickets: The Skeletal Disorders of Impaired Calcium or Phosphate Availability. , 2018, , 497-524.		2
38	A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial Evaluating the Efficacy of Burosumab, an Anti-FGF23 Antibody, in Adults With X-Linked Hypophosphatemia: Week 24 Primary Analysis. Journal of Bone and Mineral Research, 2018, 33, 1383-1393.	3.1	229
39	Unexpected widespread hypophosphatemia and bone disease associated with elemental formula use in infants and children. Bone, 2017, 97, 287-292.	1.4	50
40	Infants With Congenital Adrenal Hyperplasia Are at Risk for Hypercalcemia, Hypercalciuria, and Nephrocalcinosis. Journal of the Endocrine Society, 2017, 1, 1160-1167.	0.1	4
41	Effect of four monthly doses of a human monoclonal anti-FGF23 antibody (KRN23) on quality of life in X-linked hypophosphatemia. Bone Reports, 2016, 5, 158-162.	0.2	47
42	Serum fibroblast growth factor 23, serum iron and bone mineral density in premenopausal women. Bone, 2016, 86, 98-105.	1.4	36
43	Proportion of osteoporotic women remaining at risk for fracture despite adherence to oral bisphosphonates. Bone, 2016, 83, 267-275.	1.4	15
44	Pharmacokinetics and pharmacodynamics of a human monoclonal antiâ€FGF23 antibody (KRN23) in the first multiple ascendingâ€dose trial treating adults with Xâ€linked hypophosphatemia. Journal of Clinical Pharmacology, 2016, 56, 176-185.	1.0	38
45	Genome-wide association study of serum iron phenotypes in premenopausal women of European descent. Blood Cells, Molecules, and Diseases, 2016, 57, 50-53.	0.6	3
46	Population pharmacokinetic and pharmacodynamic analyses from a 4â€month intradose escalation and its subsequent 12â€month dose titration studies for a human monoclonal antiâ€FGF23 antibody (KRN23) in adults with Xâ€linked hypophosphatemia. Journal of Clinical Pharmacology, 2016, 56, 429-438.	1.0	19
47	Disparities in osteoporosis treatments. Osteoporosis International, 2016, 27, 509-519.	1.3	29
48	Hyperphosphatemic Familial Tumoral Calcinosis: Genetic Models of Deficient FGF23 Action. Current Osteoporosis Reports, 2015, 13, 78-87.	1.5	31
49	Prolonged Correction of Serum Phosphorus in Adults With X-Linked Hypophosphatemia Using Monthly Doses of KRN23. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2565-2573.	1.8	141
50	A Practical Clinical Approach to Paediatric Phosphate Disorders. Endocrine Development, 2015, 28, 134-161.	1.3	12
51	The Case Ectopic calcifications in a child. Kidney International, 2015, 87, 1079-1081.	2.6	2
52	Successful treatment of neonatal severe hyperparathyroidism with cinacalcet in two patients. Endocrinology, Diabetes and Metabolism Case Reports, 2015, 2015, 150040.	0.2	31
53	FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells. Oncotarget, 2015, 6, 19647-19660.	0.8	38

54 Metabolic Bone Diseases. , 2014, , 317-344.

#	Article	IF	CITATIONS
55	Calcium and Phosphate. , 2014, , 261-282.		9
56	Iron and fibroblast growth factor 23 in X-linked hypophosphatemia. Bone, 2014, 60, 87-92.	1.4	29
57	Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. Journal of Clinical Investigation, 2014, 124, 1587-1597.	3.9	264
58	Rickets: The Skeletal Disorders of Impaired Calcium or Phosphate Availability. , 2013, , 357-378.		2
59	The changing face of hypophosphatemic disorders in the FGF-23 era. Pediatric Endocrinology Reviews, 2013, 10 Suppl 2, 367-79.	1.2	14
60	Approach to the Hypophosphatemic Patient. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 696-706.	1.8	134
61	Hyperphosphatemic familial tumoral calcinosis (FGF23, GALNT3 and αKlotho). Best Practice and Research in Clinical Rheumatology, 2011, 25, 735-747.	1.4	59
62	A clinician's guide to X-linked hypophosphatemia. Journal of Bone and Mineral Research, 2011, 26, 1381-1388.	3.1	476
63	Iron Modifies Plasma FGF23 Differently in Autosomal Dominant Hypophosphatemic Rickets and Healthy Humans. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 3541-3549.	1.8	250
64	Fluorosis Because of Prolonged Voriconazole Therapy in a Teenager With Acute Myelogenous Leukemia. Journal of Clinical Oncology, 2011, 29, e779-e782.	0.8	31
65	Clinical variability of familial tumoral calcinosis caused by novel <i>GALNT3</i> mutations. American Journal of Medical Genetics, Part A, 2010, 152A, 896-903.	0.7	98
66	Treatment of X-Linked Hypophosphatemia with Calcitriol and Phosphate Increases Circulating Fibroblast Growth Factor 23 Concentrations. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1846-1850.	1.8	138
67	Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochemical and Biophysical Research Communications, 2010, 398, 513-518.	1.0	382
68	Genetics of Familial Tumoral Calcinosis. American Journal of Kidney Diseases, 2009, 53, 563-564.	2.1	2
69	Phosphaturic mesenchymal tumor, mixed connective tissue variant, of the mandible: report of a case and review of the literature. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2009, 108, 925-932.	1.6	47
70	Mutational survey of the PHEX gene in patients with X-linked hypophosphatemic rickets. Bone, 2008, 43, 663-666.	1.4	55
71	Novel GALNT3 Mutations Causing Hyperostosis-Hyperphosphatemia Syndrome Result in Low Intact Fibroblast Growth Factor 23 Concentrations. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1943-1947.	1.8	76
72	FGF23 Concentrations Vary With Disease Status in Autosomal Dominant Hypophosphatemic Rickets. Journal of Bone and Mineral Research, 2007, 22, 520-526.	3.1	149

#	Article	IF	CITATIONS
73	Etiology of Gonadotropin-Dependent Precocious Puberty. , 2007, , 331-344.		2
74	A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. Journal of Clinical Investigation, 2007, 117, 2684-2691.	3.9	390
75	Fibrous dysplasia, phosphate wasting and fibroblast growth factor 23. Pediatric Endocrinology Reviews, 2007, 4 Suppl 4, 434-9.	1.2	11
76	Sensitivity of Fibroblast Growth Factor 23 Measurements in Tumor-Induced Osteomalacia. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 2055-2061.	1.8	214
77	Intronic Deletions in theSLC34A3Gene Cause Hereditary Hypophosphatemic Rickets with Hypercalciuria. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 4022-4027.	1.8	123
78	Tumoral Calcinosis Presenting with Eyelid Calcifications due to Novel Missense Mutations in the Glycosyl Transferase Domain of theGALNT3Gene. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 4472-4475.	1.8	73
79	Fibroblast Growth Factor 23: Roles in Health and Disease: Figure 1 Journal of the American Society of Nephrology: JASN, 2005, 16, 2565-2575.	3.0	90