Javier Veloso Freire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5881281/publications.pdf

Version: 2024-02-01

1163117 1125743 14 493 8 13 citations g-index h-index papers 14 14 14 700 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Non-Pathogenic Fusarium oxysporum Fo47 Induces Distinct Responses in Two Closely Related Solanaceae Plants against the Pathogen Verticillium dahliae. Journal of Fungi (Basel, Switzerland), 2021, 7, 344.	3.5	3
2	Fusaria Strains as Biocontrol Agents: The Case of Strain Fo47 and Verticillium dahliae. Progress in Biological Control, 2020, , 309-331.	0.5	0
3	Comparative genomics of plant pathogenic Botrytis species with distinct host specificity. BMC Genomics, 2019, 20, 203.	2.8	53
4	Functional Analysis of Mating Type Genes and Transcriptome Analysis during Fruiting Body Development of <i>Botrytis cinerea</i> . MBio, 2018, 9, .	4.1	40
5	Properties of vanillyl nonanoate for protection of pepper plants against Phytophthora capsici and Botrytis cinerea. European Journal of Plant Pathology, 2018, 150, 1091-1101.	1.7	9
6	Many Shades of Grey in Botrytis–Host Plant Interactions. Trends in Plant Science, 2018, 23, 613-622.	8.8	172
7	Vanillyl nonanoate induces systemic resistance and lignification in pepper plants. Journal of Plant Physiology, 2018, 231, 251-260.	3.5	3
8	Modes of action of the protective strain Fo47 in controlling verticillium wilt of pepper. Plant Pathology, 2016, 65, 997-1007.	2.4	26
9	Wounding induces local resistance but systemic susceptibility to Botrytis cinerea in pepper plants. Journal of Plant Physiology, 2015, 176, 202-209.	3.5	20
10	Properties of capsaicinoids for the control of fungi and oomycetes pathogenic to pepper. Plant Biology, 2014, 16, 177-185.	3.8	22
11	New bricks on the wall of induced resistance: salicylic acid receptors and transgenerational priming. European Journal of Plant Pathology, 2014, 138, 685-693.	1.7	5
12	Induced resistance to <i><scp>B</scp>otrytis cinerea</i> in <i><scp>C</scp>apsicum annuum</i> by a <i><scp>F</scp>usarium</i> crude elicitor fraction, free of proteins. Plant Biology, 2013, 15, 1040-1044.	3.8	5
13	<i>Fusarium oxysporum</i> Fo47 confers protection to pepper plants against <i>Verticillium dahliae</i> and <i>Phytophthora capsici</i> , and induces the expression of defence genes. Plant Pathology, 2012, 61, 281-288.	2.4	87
14	Cross-protection of pepper plants stressed by copper against a vascular pathogen is accompanied by the induction of a defence response. Plant Science, 2010, 178, 176-182.	3.6	48