
Michelle Przedborski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5881094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	COVID-19 manifestations in people with Parkinson's disease: a USA cohort. Journal of Neurology, 2022, 269, 1107-1113.	1.8	19
2	Addressing the Challenges of Clinical Research for Freezing of Gait in Parkinson's Disease. Movement Disorders, 2022, 37, 264-267.	2.2	10
3	Discussion of Research Priorities for Gait Disorders in Parkinson's Disease. Movement Disorders, 2022, 37, 253-263.	2.2	16
4	Lipid level alteration in human and cellular models of alpha synuclein mutations. Npj Parkinson's Disease, 2022, 8, 52.	2.5	3
5	Retromer dysfunction in amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
6	The impact of COVID-19 and social distancing on people with Parkinson's disease: a survey study. Npj Parkinson's Disease, 2021, 7, 10.	2.5	58
7	Modeling the impact of public response on the COVID-19 pandemic in Ontario. PLoS ONE, 2021, 16, e0249456.	1.1	2
8	COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain, 2021, 144, 2696-2708.	3.7	254
9	Recent Advances in the Development of Stem ellâ€Đerived Dopaminergic Neuronal Transplant Therapies for Parkinson's Disease. Movement Disorders, 2021, 36, 1772-1780.	2.2	31
10	Systems biology informed neural networks (SBINN) predict response and novel combinations for PD-1 checkpoint blockade. Communications Biology, 2021, 4, 877.	2.0	9
11	Sumoylation regulates the assembly and activity of the SMN complex. Nature Communications, 2021, 12, 5040.	5.8	8
12	Non-cell-autonomous pathogenic mechanisms in amyotrophic lateral sclerosis. Trends in Neurosciences, 2021, 44, 658-668.	4.2	59
13	Reinforcement learning derived chemotherapeutic schedules for robust patient-specific therapy. Scientific Reports, 2021, 11, 17882.	1.6	7
14	A mean-field approach for modeling the propagation of perturbations in biochemical reaction networks. European Journal of Pharmaceutical Sciences, 2021, 165, 105919.	1.9	1
15	Systematic elucidation of neuron-astrocyte interaction in models of amyotrophic lateral sclerosis using multi-modal integrated bioinformatics workflow. Nature Communications, 2020, 11, 5579.	5.8	28
16	Integrating Systems Biology and an ExÂVivo Human Tumor Model Elucidates PD-1 Blockade Response Dynamics. IScience, 2020, 23, 101229.	1.9	4
17	Preparing a neurology department for SARS-CoV-2 (COVID-19). Neurology, 2020, 94, 886-891.	1.5	50
18	Deletion of <i>Ripk3</i> Prevents Motor Neuron Death <i>In Vitro</i> but not <i>In Vivo</i> . ENeuro, 2019, 6, ENEURO.0308-18.2018.	0.9	35

#	Article	IF	CITATIONS
19	PINK1 Content in Mitochondria is Regulated by ER-Associated Degradation. Journal of Neuroscience, 2019, 39, 7074-7085.	1.7	41
20	Mathematical modelling of cancer stem cell-targeted immunotherapy. Mathematical Biosciences, 2019, 318, 108269.	0.9	18
21	Amelioration of the nigrostriatal pathway facilitated by ultrasound-mediated neurotrophic delivery in early Parkinson's disease. Journal of Controlled Release, 2019, 303, 289-301.	4.8	50
22	Focused ultrasound enhanced intranasal delivery of brain derived neurotrophic factor produces neurorestorative effects in a Parkinson's disease mouse model. Scientific Reports, 2019, 9, 19402.	1.6	37
23	Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. Journal of Clinical Investigation, 2019, 129, 34-45.	3.9	109
24	A motif within the armadillo repeat of Parkinson's-linked LRRK2 interacts with FADD to hijack the extrinsic death pathway. Scientific Reports, 2018, 8, 3455.	1.6	24
25	Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons. Journal of Clinical Investigation, 2018, 128, 774-788.	3.9	72
26	The two-century journey of Parkinson disease research. Nature Reviews Neuroscience, 2017, 18, 251-259.	4.9	250
27	The Ubiquitination of PINK1 Is Restricted to Its Mature 52-kDa Form. Cell Reports, 2017, 20, 30-39.	2.9	40
28	Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults. Nature Communications, 2016, 7, 10943.	5.8	60
29	Axonal Degeneration: RIPK1 Multitasking in ALS. Current Biology, 2016, 26, R932-R934.	1.8	12
30	A new role for αâ€synuclein in Parkinson's disease: Alteration of ER–mitochondrial communication. Movement Disorders, 2015, 30, 1026-1033.	2.2	59
31	Targeting α-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. Lancet Neurology, The, 2015, 14, 855-866.	4.9	393
32	Identification of neurodegenerative factors using translatome–regulatory network analysis. Nature Neuroscience, 2015, 18, 1325-1333.	7.1	113
33	The Regulatory Machinery of Neurodegeneration in InÂVitro Models of Amyotrophic Lateral Sclerosis. Cell Reports, 2015, 12, 335-345.	2.9	42
34	From Man to Mouse. , 2015, , 287-306.		4
35	Cytosolic cleaved <scp>PINK</scp> 1 represses <scp>P</scp> arkin translocation to mitochondria and mitophagy. EMBO Reports, 2014, 15, 86-93.	2.0	101
36	Necroptosis Drives Motor Neuron Death in Models of Both Sporadic and Familial ALS. Neuron, 2014, 81, 1001-1008.	3.8	353

#	Article	IF	CITATIONS
37	α-Synuclein Is Localized to Mitochondria-Associated ER Membranes. Journal of Neuroscience, 2014, 34, 249-259.	1.7	420
38	A Computational Model of Motor Neuron Degeneration. Neuron, 2014, 83, 975-988.	3.8	145
39	Parkinsonââ,¬â,,¢s disease: animal models and dopaminergic cell vulnerability. Frontiers in Neuroanatomy, 2014, 8, 155.	0.9	370
40	Mitophagy and Parkinson's disease: Be eaten to stay healthy. Molecular and Cellular Neurosciences, 2013, 55, 37-43.	1.0	87
41	Pathogenesis of Parkinson's disease. Movement Disorders, 2013, 28, 24-30.	2.2	256
42	Classic and New Animal Models of Parkinson's Disease. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	360
43	Multimodal Actions of Neural Stem Cells in a Mouse Model of ALS: A Meta-Analysis. Science Translational Medicine, 2012, 4, 165ra164.	5.8	91
44	Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Human Molecular Genetics, 2012, 21, 978-990.	1.4	144
45	Pink1 Kinase and Its Membrane Potential (ΔÏ^)-dependent Cleavage Product Both Localize to Outer Mitochondrial Membrane by Unique Targeting Mode. Journal of Biological Chemistry, 2012, 287, 22969-22987.	1.6	70
46	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
47	Mitochondria: The Next (Neurode)Generation. Neuron, 2011, 70, 1033-1053.	3.8	489
48	D-β-Hydroxybutyrate Is Protective in Mouse Models of Huntington's Disease. PLoS ONE, 2011, 6, e24620.	1.1	81
49	A tale on animal models of Parkinson's disease. Movement Disorders, 2011, 26, 993-1002.	2.2	130
50	New insights into the pathophysiology of dystonia. Movement Disorders, 2011, 26, 1407-1407.	2.2	0
51	Can a defect in bioenergetics be involved in the pathogenesis of Parkinson's disease after all?. Movement Disorders, 2011, 26, 1408-1408.	2.2	0
52	Inflammation in ALS and SMA: Sorting out the good from the evil. Neurobiology of Disease, 2010, 37, 493-502.	2.1	115
53	Inflammation and Parkinson's disease pathogenesis. Movement Disorders, 2010, 25, S55-7.	2.2	91
54	What can pluripotent stem cells teach us about neurodegenerative diseases?. Nature Neuroscience, 2010, 13, 800-804.	7.1	40

#	Article	IF	CITATIONS
55	PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 378-383.	3.3	1,415
56	PINK1/Parkin direct mitochondria to autophagy. Autophagy, 2010, 6, 315-316.	4.3	49
57	PINK1 points Parkin to mitochondria. Autophagy, 2010, 6, 674-675.	4.3	22
58	Control of mitochondrial integrity in Parkinson's disease. Progress in Brain Research, 2010, 183, 99-113.	0.9	15
59	Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson disease. Free Radical Biology and Medicine, 2009, 47, 1049-1056.	1.3	55
60	Mutant LRRK2R1441G BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nature Neuroscience, 2009, 12, 826-828.	7.1	475
61	ls there a pathogenic role for mitochondria in Parkinson's disease?. Parkinsonism and Related Disorders, 2009, 15, S241-S244.	1.1	6
62	Oxidative Stress in Parkinson's Disease. Annals of the New York Academy of Sciences, 2008, 1147, 93-104.	1.8	392
63	Nitrated α–Synuclein Immunity Accelerates Degeneration of Nigral Dopaminergic Neurons. PLoS ONE, 2008, 3, e1376.	1.1	311
64	The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12022-12027.	3.3	290
65	The MPTP Mouse Model of Parkinson's Disease: the True, the False, and the Unknown. , 2008, , 147-158.		1
66	Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8161-8166.	3.3	190
67	Neuroinflammation and Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 83, 535-551.	1.0	63
68	Peroxiredoxin-2 links Cdk5 to neurodegeneration. Nature Medicine, 2007, 13, 907-909.	15.2	12
69	Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nature Neuroscience, 2007, 10, 615-622.	7.1	1,065
70	Protocol for the MPTP mouse model of Parkinson's disease. Nature Protocols, 2007, 2, 141-151.	5.5	831
71	Is prostaglandin E2a pathogenic factor in amyotrophic lateral sclerosis?. Annals of Neurology, 2006, 59, 980-983.	2.8	16
72	Proteasome inhibition and Parkinson's disease modeling. Annals of Neurology, 2006, 60, 260-264.	2.8	138

#	Article	IF	CITATIONS
73	The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12132-12137.	3.3	228
74	Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6025-6030.	3.3	287
75	Reactive Oxygen and Nitrogen Species: Weapons of Neuronal Destruction in Models of Parkinson's Disease. Antioxidants and Redox Signaling, 2005, 7, 685-693.	2.5	182
76	CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. Journal of Neurochemistry, 2005, 95, 974-986.	2.1	264
77	Toxic animal models. , 2005, , 196-221.		9
78	Ablation of the Inflammatory Enzyme Myeloperoxidase Mitigates Features of Parkinson's Disease in Mice. Journal of Neuroscience, 2005, 25, 6594-6600.	1.7	252
79	Toxin-induced models of Parkinson's disease. NeuroRx, 2005, 2, 484-494.	6.0	641
80	Pathogenesis of nigral cell death in Parkinson's disease. Parkinsonism and Related Disorders, 2005, 11, S3-S7.	1.1	137
81	JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 665-670.	3.3	396
82	Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9435-9440.	3.3	299
83	Genetic clues to the pathogenesis of Parkinson's disease. Nature Medicine, 2004, 10, S58-S62.	15.2	216
84	MPTP as a Mitochondrial Neurotoxic Model of Parkinson's Disease. Journal of Bioenergetics and Biomembranes, 2004, 36, 375-379.	1.0	252
85	L-3-hydroxyacyl-CoA dehydrogenase II protects in a model of Parkinson's disease. Annals of Neurology, 2004, 56, 51-60.	2.8	48
86	Clarification: Pathogenic role of glial cells in Parkinson's disease. Movement Disorders, 2004, 19, 118-118.	2.2	3
87	Molecular targets for neuroprotection. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 2004, 5, 14-18.	1.4	5
88	Programmed Cell Death in Amyotrophic Lateral Sclerosis: a Mechanism of Pathogenic and Therapeutic Importance. Neurologist, 2004, 10, 1-7.	0.4	50
89	Nitric Oxide and Reactive Oxygen Species in Parkinson's Disease. IUBMB Life, 2003, 55, 329-335.	1.5	157
90	Recent advances in amyotrophic lateral sclerosis research. Current Neurology and Neuroscience Reports, 2003, 3, 70-77.	2.0	25

#	Article	IF	CITATIONS
91	Pathogenic role of glial cells in Parkinson's disease. Movement Disorders, 2003, 18, 121-129.	2.2	246
92	Sequential activation of individual caspases, and of alterations in Bcl-2 proapoptotic signals in a mouse model of Huntington's disease. Journal of Neurochemistry, 2003, 87, 1568-1568.	2.1	1
93	Targeting programmed cell death in neurodegenerative diseases. Nature Reviews Neuroscience, 2003, 4, 365-375.	4.9	476
94	Parkinson's Disease. Neuron, 2003, 39, 889-909.	3.8	4,639
95	Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13650-13655.	3.3	288
96	Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5473-5478.	3.3	611
97	NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6145-6150.	3.3	572
98	Enriched Environment Confers Resistance to 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine and Cocaine: Involvement of Dopamine Transporter and Trophic Factors. Journal of Neuroscience, 2003, 23, 10999-11007.	1.7	206
99	Inhibition of Calpains Prevents Neuronal and Behavioral Deficits in an MPTP Mouse Model of Parkinson's Disease. Journal of Neuroscience, 2003, 23, 4081-4091.	1.7	265
100	The 1â€Methylâ€4â€Phenylâ€1,2,3,6â€Tetrahydropyridine Mouse Model. Annals of the New York Academy of Sciences, 2003, 991, 189-198.	1.8	232
101	Series Introduction: Neurodegeneration: What is it and where are we?. Journal of Clinical Investigation, 2003, 111, 3-10.	3.9	161
102	Programmed cell death in amyotrophic lateral sclerosis. Journal of Clinical Investigation, 2003, 111, 153-161.	3.9	58
103	D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. Journal of Clinical Investigation, 2003, 112, 892-901.	3.9	254
104	Series Introduction: Neurodegeneration: What is it and where are we?. Journal of Clinical Investigation, 2003, 111, 3-10.	3.9	327
105	Programmed cell death in amyotrophic lateral sclerosis. Journal of Clinical Investigation, 2003, 111, 153-161.	3.9	119
106	D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. Journal of Clinical Investigation, 2003, 112, 892-901.	3.9	363
107	Free radical and nitric oxide toxicity in Parkinson's disease. Advances in Neurology, 2003, 91, 83-94.	0.8	18
108	The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson's disease. Annals of the New York Academy of Sciences, 2003, 991, 189-98.	1.8	109

#	Article	IF	CITATIONS
109	Transgenic superoxide dismutase overproducer: Murine. Methods in Enzymology, 2002, 349, 180-190.	0.4	2
110	Blockade of Microglial Activation Is Neuroprotective in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Mouse Model of Parkinson Disease. Journal of Neuroscience, 2002, 22, 1763-1771.	1.7	1,124
111	Instrumental Activation of Bid by Caspase-1 in a Transgenic Mouse Model of ALS. Molecular and Cellular Neurosciences, 2002, 20, 553-562.	1.0	97
112	Resistance of Â-synuclein null mice to the parkinsonian neurotoxin MPTP. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14524-14529.	3.3	541
113	Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Annals of Neurology, 2002, 52, 771-778.	2.8	299
114	Effects of Wild-Type and Mutated Copper/Zinc Superoxide Dismutase on Neuronal Survival and I-DOPA-Induced Toxicity in Postnatal Midbrain Culture. Journal of Neurochemistry, 2002, 69, 21-33.	2.1	61
115	Inducible Nitric Oxide Synthase Up-Regulation in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis. Journal of Neurochemistry, 2002, 72, 2415-2425.	2.1	204
116	Bax and Bcl-2 Interaction in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis. Journal of Neurochemistry, 2002, 73, 2460-2468.	2.1	142
117	Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature, 2002, 417, 74-78.	13.7	1,023
118	Glial Cell Response: A Pathogenic Factor in Parkinson's Disease. Journal of NeuroVirology, 2002, 8, 551-558.	1.0	37
119	Engineered modeling and the secrets of Parkinson's disease. Trends in Neurosciences, 2001, 24, S49-S55.	4.2	17
120	Engineered modeling and the secrets of Parkinson's disease. Trends in Neurosciences, 2001, 24, 49-55.	4.2	12
121	Recruitment of the Mitochondrial-Dependent Apoptotic Pathway in Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2001, 21, 6569-6576.	1.7	235
122	The role of glial cells in Parkinson's disease. Current Opinion in Neurology, 2001, 14, 483-489.	1.8	303
123	α-Synuclein Up-Regulation in Substantia Nigra Dopaminergic Neurons Following Administration of the Parkinsonian Toxin MPTP. Journal of Neurochemistry, 2001, 74, 721-729.	2.1	346
124	Oxidative post-translational modifications of α-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Journal of Neurochemistry, 2001, 76, 637-640.	2.1	184
125	The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. Journal of Neurochemistry, 2001, 76, 1265-1274.	2.1	413
126	Mice transgenic for exon 1 of the Huntington's disease gene display reduced striatal sensitivity to neurotoxicity induced by dopamine and 6-hydroxydopamine. European Journal of Neuroscience, 2001, 14, 1425-1435.	1.2	39

#	Article	IF	CITATIONS
127	Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Annals of Neurology, 2001, 49, 176-185.	2.8	266
128	MPTP: a review of its mechanisms of neurotoxicity. Clinical Neuroscience Research, 2001, 1, 407-418.	0.8	167
129	Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. , 2001, 49, 176.		6
130	Developmental cell death in dopaminergic neurons of the substantia nigra of mice. Journal of Comparative Neurology, 2000, 424, 476-488.	0.9	127
131	A novel mitochondrial 12SrRNA point mutation in parkinsonism, deafness, and neuropathy. Annals of Neurology, 2000, 48, 730-736.	2.8	161
132	Delaying Caspase Activation by Bcl-2: A Clue to Disease Retardation in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2000, 20, 9119-9125.	1.7	153
133	Reply: a new look at the pathogenesis of Parkinson's disease. Trends in Pharmacological Sciences, 2000, 21, 165.	4.0	22
134	Functional Role of Caspase-1 and Caspase-3 in an ALS Transgenic Mouse Model. Science, 2000, 288, 335-339.	6.0	680
135	Advances in our Knowledge of MPTP Action and Mechanism. , 2000, , 41-53.		1
136	The parkinsonian toxin MPTP: action and mechanism. Restorative Neurology and Neuroscience, 2000, 16, 135-142.	0.4	175
137	Mass Spectrometric Quantification of 3-Nitrotyrosine, ortho-Tyrosine, and 0,0â€2-Dityrosine in Brain Tissue of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated Mice, a Model of Oxidative Stress in Parkinson's Disease. Journal of Biological Chemistry, 1999, 274, 34621-34628.	1.6	244
138	Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nature Medicine, 1999, 5, 1403-1409.	15.2	1,007
139	Does increased superoxide dismutase activity really cause muscular dystrophy?. Annals of Neurology, 1999, 46, 135-135.	2.8	1
140	Cocaine reward and MPTP toxicity: alteration by regional variant dopamine transporter overexpression. Molecular Brain Research, 1999, 73, 37-49.	2.5	89
141	?-Synuclein expression in substantia nigra and cortex in Parkinson's disease. Movement Disorders, 1999, 14, 417-422.	2.2	95
142	Loss of ROS—a radical response. Nature Genetics, 1998, 18, 99-100.	9.4	15
143	Quinolinic acid-induced lesions of the rat striatum: Quantitative autoradiographic binding assessment. Neurological Research, 1998, 20, 46-56.	0.6	23
144	Experimental developments in movement disorders: update on proposed free radical mechanisms. Current Opinion in Neurology, 1998, 11, 335-339.	1.8	38

#	Article	IF	CITATIONS
145	Bcl-2: Prolonging Life in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis. Science, 1997, 277, 559-563.	6.0	462
146	Brain superoxide dismutase, catalase, and glutathione peroxidase activities in amyotrophic lateral sclerosis. Annals of Neurology, 1996, 39, 158-165.	2.8	92
147	Peripheral and central pharmacokinetics of apomorphine and its effect on dopamine metabolism in humans. Movement Disorders, 1995, 10, 28-36.	2.2	57
148	Antiparkinsonian therapies and brain mitochondrial complex I activity. Movement Disorders, 1995, 10, 312-317.	2.2	39
149	Fentanyl-induced dyskinesias. Movement Disorders, 1995, 10, 679-680.	2.2	21
150	Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Experimental Neurology, 1995, 4, 257-269.	1.7	555
151	Quantitative assessment of quinolinic acid-induced striatal toxicity in rats using radioligand binding assays. Neurological Research, 1994, 16, 194-200.	0.6	25
152	Neuroleptic medications inhibit complex I of the electron transport chain. Annals of Neurology, 1994, 35, 244-245.	2.8	13
153	Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity. Annals of Neurology, 1993, 34, 715-723.	2.8	144
154	Adenosine receptor antagonists potentiate dopamine receptor agonist-induced rotational behavior in 6-hydroxydopamine-lesioned rats. Brain Research, 1993, 613, 347-351.	1.1	95
155	Positron Emission Tomography-Guided Stereotactic Brain Biopsy. Neurosurgery, 1992, 31, 792-797.	0.6	57
156	Lack of changes in ventricular cerebrospinal fluid concentrations of homovanillic acid following acute challenge with levodopa. Annals of Neurology, 1992, 31, 113-114.	2.8	12
157	Effect of Unilateral Perinatal Hypoxic-Ischemic Brain Injury in the Rat on Dopamine D1and D2Receptors and Uptake Sites: A Quantitative Autoradiographic Study. Journal of Neurochemistry, 1991, 57, 1951-1961.	2.1	64
158	Effect of Unilateral Perinatal Hypoxic-Ischemic Brain Injury in the Rat on Striatal Muscarinic Cholinergic Receptors and High-Affinity Choline Uptake Sites: A Quantitative Autoradiographic Study. Journal of Neurochemistry, 1991, 57, 1962-1970.	2.1	18
159	Neurotensin receptors in human meningiomas. Annals of Neurology, 1991, 30, 650-654.	2.8	8
160	Trichothiodystrophy, mental retardation, short stature, ataxia, and gonadal dysfunction in three Moroccan siblings. American Journal of Medical Genetics Part A, 1990, 35, 566-573.	2.4	21