Maria Fernanda Ortuño

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5880883/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of Substrate Water Availability Using Soil Sensors and Effects of Water Deficit on the Morphology and Physiology of Potted Hebe andersonii. Agronomy, 2022, 12, 206.	1.3	6
2	Tolerance and Recovery Capacity to Reclaimed Wastewater Irrigation of Salvia officinalis and Asteriscus maritimus Plants Inoculated with Arbuscular Mycorrhizae. Horticulturae, 2022, 8, 159.	1.2	1
3	Substrate composition affects the development of water stress and subsequent recovery by inducing physiological changes in Cistus albidus plants. Plant Physiology and Biochemistry, 2021, 158, 125-135.	2.8	6
4	Recycled Wastewater and Reverse Osmosis Brine Use for Halophytes Irrigation: Differences in Physiological, Nutritional and Hormonal Responses of Crithmum maritimum and Atriplex halimus Plants. Agronomy, 2021, 11, 627.	1.3	12
5	Effect of Pisolithus tinctorious on Physiological and Hormonal Traits in Cistus Plants to Water Deficit: Relationships among Water Status, Photosynthetic Activity and Plant Quality. Plants, 2021, 10, 976.	1.6	3
6	Assessment of soil salinity indexes using electrical conductivity sensors. Scientia Horticulturae, 2021, 285, 110171.	1.7	21
7	Assessment of the Combined Effect of Temperature and Salinity on the Outputs of Soil Dielectric Sensors in Coconut Fiber. Sustainability, 2020, 12, 6577.	1.6	6
8	Influence of mycorrhizal or microbial complex inoculation on laurustinus plants irrigated with reclaimed water. Journal of Horticultural Science and Biotechnology, 2020, 95, 661-672.	0.9	3
9	Influence of Mixed Substrate and Arbuscular Mycorrhizal Fungi on Photosynthetic Efficiency, Nutrient and Water Status and Yield in Tomato Plants Irrigated with Saline Reclaimed Waters. Water (Switzerland), 2020, 12, 438.	1.2	11
10	Deficit irrigation as a strategy to control growth in ornamental plants and enhance their ability to adapt to drought conditions. Journal of Horticultural Science and Biotechnology, 2019, 94, 137-150.	0.9	32
11	The use of reclaimed water is a viable and safe strategy for the irrigation of myrtle plants in a scenario of climate change. Water Science and Technology: Water Supply, 2019, 19, 1741-1747.	1.0	2
12	Controlling salt flushing using a salinity index obtained by soil dielectric sensors improves the physiological status and quality of potted hydrangea plant. Scientia Horticulturae, 2019, 247, 335-343.	1.7	7
13	Mycorrhizal inoculation on compost substrate affects nutritional balance, water uptake and photosynthetic efficiency in Cistus albidus plants submitted to water stress. Revista Brasileira De Botanica, 2018, 41, 299-310.	0.5	21
14	Effectiveness of bacterial inoculation in alleviation of salinity on water status, mineral content, gas exchange and photosynthetic parameters of Viburnum tinus L. plants. Scientia Horticulturae, 2018, 237, 303-310.	1.7	5
15	Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 2017, 7, 18.	1.3	872
16	Changes in growth, physiological parameters and the hormonal status of Myrtus communis L. plants irrigated with water with different chemical compositions. Journal of Plant Physiology, 2016, 191, 12-21.	1.6	25
17	Protective effects of Glomus iranicum var. tenuihypharum on soil and Viburnum tinus plants irrigated with treated wastewater under field conditions. Mycorrhiza, 2015, 25, 399-409.	1.3	20
18	Stem water potential estimation of drip-irrigated early-maturing peach trees under Mediterranean conditions. Computers and Electronics in Agriculture, 2015, 114, 7-13.	3.7	55

#	Article	IF	CITATIONS
19	Mycorrhizal euonymus plants and reclaimed water: Biomass, water status and nutritional responses. Scientia Horticulturae, 2015, 186, 61-69.	1.7	35
20	Sensitivity of thermal imaging and infrared thermometry to detect water status changes in Euonymus japonica plants irrigated with saline reclaimed water. Biosystems Engineering, 2015, 133, 21-32.	1.9	28
21	Influence of arbuscular mycorrhizal fungi and treated wastewater on water relations and leaf structure alterations of Viburnum tinus L. plants during both saline and recovery periods. Journal of Plant Physiology, 2015, 188, 96-105.	1.6	22
22	Daily Photosynthesis, Water Relations, and Ion Concentrations of Euonymus Irrigated with Treated Wastewater. Hortscience: A Publication of the American Society for Hortcultural Science, 2014, 49, 1292-1297.	0.5	6
23	Physiological mechanisms involved in the recovery of euonymus and laurustinus subjected to saline waters. Agricultural Water Management, 2013, 128, 131-139.	2.4	26
24	Water relations, nutrient content and developmental responses of Euonymus plants irrigated with water of different degrees of salinity and quality. Journal of Plant Research, 2013, 126, 567-576.	1.2	40
25	Diurnal variations in water relations of deficit irrigated lemon trees during fruit growth period. Spanish Journal of Agricultural Research, 2013, 11, 137.	0.3	11
26	Grapevine varieties exhibiting differences in stomatal response to water deficit. Functional Plant Biology, 2012, 39, 179.	1.1	118
27	Efficiency of a new strategy involving a new class of natural heteroâ€ligand iron(III) chelates (Fe(III)â€NHL) to improve fruit tree growth in alkaline/calcareous soils. Journal of the Science of Food and Agriculture, 2012, 92, 3065-3071.	1.7	5
28	Plant water relations of leaves of pomegranate trees under different irrigation conditions. Environmental and Experimental Botany, 2012, 77, 19-24.	2.0	64
29	Seasonal changes of maximum daily shrinkage reference equations for irrigation scheduling in olive trees: Influence of fruit load. Agricultural Water Management, 2011, 99, 121-127.	2.4	17
30	Using trunk diameter sensors for regulated deficit irrigation scheduling in early maturing peach trees. Environmental and Experimental Botany, 2011, 71, 409-409.	2.0	37
31	Establishing maximum daily trunk shrinkage and midday stem water potential reference equations for irrigation scheduling of early maturing peach trees. Irrigation Science, 2011, 29, 299-309.	1.3	26
32	Iron deficiency enhances bioactive phenolics in lemon juice. Journal of the Science of Food and Agriculture, 2011, 91, n/a-n/a.	1.7	15
33	Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance: metabolic reorganization prior to early stress responses. Journal of Experimental Botany, 2011, 62, 4965-4974.	2.4	33
34	Mechanisms for drought resistance in early maturing cvar Flordastar peach trees. Journal of Agricultural Science, 2011, 149, 609-616.	0.6	33
35	Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives. Agricultural Water Management, 2010, 97, 1-11.	2.4	156
36	Influence of crop load on maximum daily trunk shrinkage reference equations for irrigation scheduling of early maturing peach trees. Agricultural Water Management, 2010, 97, 333-338.	2.4	28

#	Article	IF	CITATIONS
37	New approach for olive trees irrigation scheduling using trunk diameter sensors. Agricultural Water Management, 2010, 97, 1822-1828.	2.4	43
38	Maximum daily trunk shrinkage and stem water potential reference equations for irrigation scheduling of lemon trees. Irrigation Science, 2009, 27, 121-127.	1.3	50
39	Using continuously recorded trunk diameter fluctuations for estimating water requirements of lemon trees. Irrigation Science, 2009, 27, 271-276.	1.3	23
40	Assessment of maximum daily trunk shrinkage signal intensity threshold values for deficit irrigation in lemon trees. Agricultural Water Management, 2009, 96, 80-86.	2.4	24
41	Analysis of carbohydrates in Lupinus albus stems on imposition of water deficit, using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography A, 2008, 1187, 111-118.	1.8	58
42	Erratum to "Analysis of carbohydrates in Lupinus albus stems on imposition of water deficit, using porous graphitic carbon liquid chromatography–electrospray ionization mass spectrometry―[J. Chromatogr. A 1187 (2008) 111–118]. Journal of Chromatography A, 2008, 1201, 132.	1.8	3
43	Environmental and stomatal control of transpiration, canopy conductance and decoupling coefficient in young lemon trees under shading net. Environmental and Experimental Botany, 2008, 63, 200-206.	2.0	56
44	Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance. Tree Physiology, 2008, 29, 77-86.	1.4	37
45	Preliminary assessment of the feasibility of using maximum daily trunk shrinkage for irrigation scheduling in lemon trees. Agricultural Water Management, 2007, 89, 167-171.	2.4	44
46	Mesophyll conductance to CO 2 in Arabidopsis thaliana. New Phytologist, 2007, 175, 501-511.	3.5	138
47	Deficit Irrigation as a Strategy to Save Water: Physiology and Potential Application to Horticulture. Journal of Integrative Plant Biology, 2007, 49, 1421-1434.	4.1	313
48	Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Annals of Applied Biology, 2007, 150, 237-252.	1.3	396
49	Water status indicators of lemon trees in response to flooding and recovery. Biologia Plantarum, 2007, 51, 292-296.	1.9	30
50	Improving water-use efficiency of young lemon trees by shading with aluminised-plastic nets. Agricultural Water Management, 2006, 82, 387-398.	2.4	39
51	Relationships Between Climatic Variables and Sap Flow, Stem Water Potential and Maximum Daily Trunk Shrinkage in Lemon Trees. Plant and Soil, 2006, 279, 229-242.	1.8	76
52	Stem and leaf water potentials, gas exchange, sap flow, and trunk diameter fluctuations for detecting water stress in lemon trees. Trees - Structure and Function, 2006, 20, 1-8.	0.9	106
53	Effects of NaCl salinity and water stress on growth and leaf water relations of plants. Environmental and Experimental Botany, 2005, 53, 113-123.	2.0	139
54	Sap flow and trunk diameter fluctuations of young lemon trees under water stress and rewatering. Environmental and Experimental Botany, 2005, 54, 155-162.	2.0	44

#	Article	IF	CITATIONS
55	Compensation heat-pulse measurements of sap flow for estimating transpiration in young lemon trees. Biologia Plantarum, 2005, 49, 527-532.	1.9	29
56	Spatial root distribution of apricot trees in different soil tillage practices. Plant and Soil, 2005, 272, 211-221.	1.8	55
57	Evaluation of transpiration in adult apricot trees from sap flow measurements. Agricultural Water Management, 2005, 72, 131-145.	2.4	42
58	Comparison of continuously recorded plant-based water stress indicators for young lemon trees. Plant and Soil, 2004, 267, 263-270.	1.8	37
59	Interpreting trunk diameter changes in young lemon trees under deficit irrigation. Plant Science, 2004, 167, 275-280.	1.7	59
60	Comparative growth and water relations of Cistus albidus and Cistus monspeliensis plants during water deficit conditions and recovery. Plant Science, 2002, 162, 107-113.	1.7	117