Carla Schommer

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/5880871/publications.pdf
Version: 2024-02-01

$\left.\begin{array}{lll}\text { Potent inhibition of TCP transcription factors by miR319 ensures proper root growth in Arabidopsis. } \\ \text { Plant Molecular Biology, 2022, 108, 93-103. }\end{array}\right] .3 .9$ 14
Spatial Control of Gene Expression by miR319-Regulated TCP Transcription Factors in Leaf
Development. Plant Physiology, 2018, 176, 1694-1708.

4 Control of cell proliferation by microRNAs in plants. Current Opinion in Plant Biology, 2016, 34, 68-76. $\quad 7.1$

5	Repression of Cell Proliferation by miR319-Regulated TCP4. Molecular Plant, 2014, 7, 1533-1544.	8.3	232
6	MicroRNA miR396 and RDR6 synergistically regulate leaf development. Mechanisms of Development, 2013, 130, 2-13.	1.7	67
7	Identification of new microRNA-regulated genes by conserved targeting in plant species. Nucleic Acids Research, 2012, 40, 8893-8904.	14.5	45
8	Control of cell proliferation in <i>Arabidopsis thaliana</i> by microRNA miR396. Development (Cambridge), 2010, 137, 103-112.	2.5	476
9	Control of Jasmonate Biosynthesis and Senescence by miR319 Targets. PLoS Biology, 2008, 6, e230.	5.6	803
10	Sequence and Expression Differences Underlie Functional Specialization of Arabidopsis MicroRNAs miR159 and miR319. Developmental Cell, 2007, 13, 115-125.	7.0	399
11	Specific Effects of MicroRNAs on the Plant Transcriptome. Developmental Cell, 2005, 8, 517-527.	7.0	1,345
12	<i>AHP2<\|i> is required for bivalent formation and for segregation of homologous chromosomes in <i>Arabidopsis</i> meiosis. Plant Journal, 2003, 36, 1-11.	5.7	78
13	Control of leaf morphogenesis by microRNAs. Nature, 2003, 425, 257-263.	27.8	1,676

