Kaori Takehara-Nishiuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5880797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuronal ensemble dynamics in associative learning. Current Opinion in Neurobiology, 2022, 73, 102530.	4.2	8
2	Lateral Entorhinal Cortex Suppresses Drift in Cortical Memory Representations. Journal of Neuroscience, 2022, 42, 1104-1118.	3.6	6
3	Outcome-Locked Cholinergic Signaling Suppresses Prefrontal Encoding of Stimulus Associations. Journal of Neuroscience, 2022, 42, 4202-4214.	3.6	6
4	Neuronal Code for Episodic Time in the Lateral Entorhinal Cortex. Frontiers in Integrative Neuroscience, 2022, 16, 899412.	2.1	1
5	Prefrontal projections to the nucleus reuniens signal behavioral relevance of stimuli during associative learning. Scientific Reports, 2022, 12, .	3.3	0
6	Neurobiology of systems memory consolidation. European Journal of Neuroscience, 2021, 54, 6850-6863.	2.6	25
7	Multiple dimensions of social motivation in adult female degus. PLoS ONE, 2021, 16, e0250219.	2.5	6
8	Lateral entorhinal cortex supports the development of prefrontal network activity that bridges temporally discontiguous stimuli. Hippocampus, 2021, 31, 1285-1299.	1.9	10
9	Distributed representations of temporal stimulus associations across regular-firing and fast-spiking neurons in rat medial prefrontal cortex. Journal of Neurophysiology, 2020, 123, 439-450.	1.8	9
10	Prefrontal Neural Ensembles Develop Selective Code for Stimulus Associations within Minutes of Novel Experiences. Journal of Neuroscience, 2020, 40, 8355-8366.	3.6	15
11	Prefrontal–hippocampal interaction during the encoding of new memories. Brain and Neuroscience Advances, 2020, 4, 239821282092558.	3.4	30
12	Aberrant Cortical Event-Related Potentials During Associative Learning in Rat Models for Presymptomatic Stages of Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 63, 725-740.	2.6	4
13	Neural representations of time-linked memory. Neurobiology of Learning and Memory, 2018, 153, 57-70.	1.9	10
14	Cholinergic Modulation of Frontoparietal Cortical Network Dynamics Supporting Supramodal Attention. Journal of Neuroscience, 2018, 38, 3988-4005.	3.6	21
15	Prefrontal Theta Oscillations Promote Selective Encoding of Behaviorally Relevant Events. ENeuro, 2018, 5, ENEURO.0407-18.2018.	1.9	16
16	Observational fear learning in degus is correlated with temporal vocalization patterns. Behavioural Brain Research, 2017, 332, 362-371.	2.2	15
17	Entorhinal tau pathology disrupts hippocampal-prefrontal oscillatory coupling during associative learning. Neurobiology of Aging, 2017, 58, 151-162.	3.1	28
18	Generalizable knowledge outweighs incidental details in prefrontal ensemble code over time. ELife, 2017. 6	6.0	37

Kaori Takehara-Nishiuchi

#	Article	IF	CITATIONS
19	Parvalbumin-positive interneurons mediate neocortical-hippocampal interactions that are necessary for memory consolidation. ELife, 2017, 6, .	6.0	151
20	Phasic and tonic neuron ensemble codes for stimulus-environment conjunctions in the lateral entorhinal cortex. ELife, 2017, 6, .	6.0	32
21	The Anatomy and Physiology of Eyeblink Classical Conditioning. Current Topics in Behavioral Neurosciences, 2016, 37, 297-323.	1.7	33
22	Enhancing Prefrontal Neuron Activity Enables Associative Learning of Temporally Disparate Events. Cell Reports, 2016, 15, 2400-2410.	6.4	21
23	Cholinergic, but not <scp>NMDA</scp> , receptors in the lateral entorhinal cortex mediate acquisition in trace eyeblink conditioning. Hippocampus, 2015, 25, 1456-1464.	1.9	16
24	Weaning Off Mental Tasks to Achieve Voluntary Self-Regulatory Control of a Near-Infrared Spectroscopy Brain-Computer Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 548-561.	4.9	28
25	Exploring methodological frameworks for a mental task-based near-infrared spectroscopy brain–computer interface. Journal of Neuroscience Methods, 2015, 254, 36-45.	2.5	11
26	Usability and performance-informed selection of personalized mental tasks for an online near-infrared spectroscopy brain-computer interface. Neurophotonics, 2015, 2, 025001.	3.3	24
27	Chronic deep brain stimulation of the rat ventral medial prefrontal cortex disrupts hippocampal–prefrontal coherence. Experimental Neurology, 2015, 269, 1-7.	4.1	11
28	Entorhinal cortex and consolidated memory. Neuroscience Research, 2014, 84, 27-33.	1.9	71
29	Parvalbumin and GAD65 Interneuron Inhibition in the Ventral Hippocampus Induces Distinct Behavioral Deficits Relevant to Schizophrenia. Journal of Neuroscience, 2014, 34, 14948-14960.	3.6	78
30	Diversity of mnemonic function within the entorhinal cortex: A meta-analysis of rodent behavioral studies. Neurobiology of Learning and Memory, 2014, 115, 95-107.	1.9	29
31	P4-005: ENTORHINAL TAU PATHOLOGY AFFECTS LOCAL NEURONS AND CORTICAL THETA OSCILLATIONS DURING MEMORY ACQUISITION. , 2014, 10, P785-P785.		0
32	The cortical structure of consolidated memory: A hypothesis on the role of the cingulate–entorhinal cortical connection. Neurobiology of Learning and Memory, 2013, 106, 343-350.	1.9	33
33	Activation Patterns in Superficial Layers of Neocortex Change Between Experiences Independent of Behavior, Environment, or the Hippocampus. Cerebral Cortex, 2013, 23, 2225-2234.	2.9	5
34	Coupling of prefrontal gamma amplitude and theta phase is strengthened in trace eyeblink conditioning. Neurobiology of Learning and Memory, 2013, 100, 117-126.	1.9	8
35	Unilateral Lateral Entorhinal Inactivation Impairs Memory Expression in Trace Eyeblink Conditioning. PLoS ONE, 2013, 8, e84543.	2.5	19
36	Functional Dissociation within the Entorhinal Cortex for Memory Retrieval of an Association between Temporally Discontiguous Stimuli. Journal of Neuroscience, 2012, 32, 5356-5361.	3.6	48

#	Article	IF	CITATIONS
37	Increased Entorhinal–Prefrontal Theta Synchronization Parallels Decreased Entorhinal–Hippocampal Theta Synchronization during Learning and Consolidation of Associative Memory. Frontiers in Behavioral Neuroscience, 2011, 5, 90.	2.0	52
38	Spontaneous Changes of Neocortical Code for Associative Memory During Consolidation. Science, 2008, 322, 960-963.	12.6	213
39	Systems Consolidation Requires Postlearning Activation of NMDA Receptors in the Medial Prefrontal Cortex in Trace Eyeblink Conditioning. Journal of Neuroscience, 2006, 26, 5049-5058.	3.6	98
40	NMDA receptor-dependent processes in the medial prefrontal cortex are important for acquisition and the early stage of consolidation during trace, but not delay eyeblink conditioning. Learning and Memory, 2005, 12, 606-614.	1.3	68
41	The N-methyl-d-aspartate (NMDA)-type glutamate receptor GluRε2 is important for delay and trace eyeblink conditioning in mice. Neuroscience Letters, 2004, 364, 43-47.	2.1	16
42	Time-Dependent Reorganization of the Brain Components Underlying Memory Retention in Trace Eyeblink Conditioning. Journal of Neuroscience, 2003, 23, 9897-9905.	3.6	309
43	Time-limited role of the hippocampus in the memory for trace eyeblink conditioning in mice. Brain Research, 2002, 951, 183-190.	2.2	89
44	Effects of the noncompetitive NMDA receptor antagonist MK-801 on classical eyeblink conditioning in mice. Neuropharmacology, 2001, 41, 618-628.	4.1	37