Hervé Vezin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5880538/publications.pdf

Version: 2024-02-01

23567 13,903 238 58 citations h-index papers

g-index 263 263 263 14339 docs citations times ranked citing authors all docs

24258

110

#	Article	IF	CITATIONS
1	Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nature Materials, 2013, 12, 827-835.	27.5	1,192
2	Conjugated dicarboxylate anodes for Li-ion batteries. Nature Materials, 2009, 8, 120-125.	27.5	898
3	Origin of voltage decay in high-capacity layered oxide electrodes. Nature Materials, 2015, 14, 230-238.	27.5	757
4	Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds. Corrosion Science, 2007, 49, 2254-2269.	6.6	431
5	Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: Experimental and theoretical investigations. Corrosion Science, 2010, 52, 3042-3051.	6.6	334
6	New 1 H -pyrrole-2,5-dione derivatives as efficient organic inhibitors of carbon steel corrosion in hydrochloric acid medium: Electrochemical, XPS and DFT studies. Corrosion Science, 2015, 90, 572-584.	6.6	299
7	Electrochemical and quantum chemical studies of new thiadiazole derivatives adsorption on mild steel in normal hydrochloric acid medium. Corrosion Science, 2005, 47, 485-505.	6.6	245
8	Understanding the adsorption of 4 H -1,2,4-triazole derivatives on mild steel surface in molar hydrochloric acid. Applied Surface Science, 2007, 253, 3696-3704.	6.1	237
9	ac impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution. Electrochimica Acta, 2010, 55, 1670-1681.	5.2	228
10	Low-Potential Sodium Insertion in a NASICON-Type Structure through the Ti(III)/Ti(II) Redox Couple. Journal of the American Chemical Society, 2013, 135, 3897-3903.	13.7	213
11	Copper Oxide Nanoparticle Foliar Uptake, Phytotoxicity, and Consequences for Sustainable Urban Agriculture. Environmental Science & Environmental Scie	10.0	203
12	Enhanced corrosion resistance of mild steel in normal sulfuric acid medium by 2,5-bis(n-thienyl)-1,3,4-thiadiazoles: Electrochemical, X-ray photoelectron spectroscopy and theoretical studies. Applied Surface Science, 2007, 253, 9267-9276.	6.1	202
13	2,5-Bis(n-methoxyphenyl)-1,3,4-oxadiazoles used as corrosion inhibitors in acidic media: correlation between inhibition efficiency and chemical structure. Corrosion Science, 2002, 44, 2271-2289.	6.6	196
14	The inhibition of mild steel corrosion in acidic solutions by 2,5-bis(4-pyridyl)-1,3,4-thiadiazole: Structure–activity correlation. Corrosion Science, 2006, 48, 1279-1291.	6.6	191
15	Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nature Communications, 2015, 6, 6276.	12.8	187
16	The influence of some new 2,5-disubstituted 1,3,4-thiadiazoles on the corrosion behaviour of mild steel in 1M HCl solution: AC impedance study and theoretical approach. Electrochimica Acta, 2007, 52, 6865-6872.	5.2	168
17	The Antimalarial Ferroquine: Role of the Metal and Intramolecular Hydrogen Bond in Activity and Resistance. ACS Chemical Biology, 2011, 6, 275-287.	3.4	167
18	Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate. Journal of Applied Polymer Science, 2001, 82, 3262-3274.	2.6	166

#	Article	IF	Citations
19	ZnO Oxygen Vacancies Formation and Filling Followed by in Situ Photoluminescence and in Situ EPR. Journal of Physical Chemistry C, 2012, 116, 21297-21307.	3.1	164
20	Expandable graphite: A fire retardant additive for polyurethane coatings. Fire and Materials, 2003, 27, 103-117.	2.0	163
21	Enhanced corrosion resistance of carbon steel in normal sulfuric acid medium by some macrocyclic polyether compounds containing a 1,3,4-thiadiazole moiety: AC impedance and computational studies. Corrosion Science, 2009, 51, 2165-2173.	6.6	159
22	2,5-Bis(4-dimethylaminophenyl)-1,3,4-oxadiazole and 2,5-bis(4-dimethylaminophenyl)-1,3,4-thiadiazole as corrosion inhibitors for mild steel in acidic media. Corrosion Science, 2004, 46, 2781-2792.	6.6	154
23	Investigation of the inhibitive effect of substituted oxadiazoles on the corrosion of mild steel in HCl medium. Corrosion Science, 2001, 43, 951-962.	6.6	145
24	Oxidation of Cullto Culll, Free Radical Production, and DNA Cleavage by Hydroxy-salenâ^'Copper Complexes. Isomeric Effects Studied by ESR and Electrochemistry. Journal of the American Chemical Society, 1999, 121, 1862-1869.	13.7	142
25	Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4. Nature Energy, 2017, 2, 954-962.	39.5	138
26	Experimental and theoretical study of 3-pyridyl-substituted 1,2,4-thiadiazole and 1,3,4-thiadiazole as corrosion inhibitors of mild steel in acidic media. Materials Chemistry and Physics, 2004, 87, 18-23.	4.0	133
27	Enhanced corrosion resistance of mild steel in molar hydrochloric acid solution by 1,4-bis(2-pyridyl)-5H-pyridazino[4,5-b]indole: Electrochemical, theoretical and XPS studies. Applied Surface Science, 2006, 252, 2684-2691.	6.1	132
28	Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning ¹³ C and ²⁹ Si NMR Enhanced by Dynamic Nuclear Polarization. Journal of Physical Chemistry C, 2013, 117, 1375-1382.	3.1	128
29	Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role. Applied Catalysis A: General, 2012, 443-444, 171-180.	4.3	126
30	Electrochemical and quantum chemical studies of some indole derivatives as corrosion inhibitors for C38 steel in molar hydrochloric acid. Corrosion Science, 2010, 52, 3367-3376.	6.6	122
31	Pulsedâ€EPR Evidence of a Manganese(II) Hydroxycarbonyl Intermediate in the Electrocatalytic Reduction of Carbon Dioxide by a Manganese Bipyridyl Derivative. Angewandte Chemie - International Edition, 2014, 53, 240-243.	13.8	121
32	Beyond the Silica Surface by Direct Siliconâ€29 Dynamic Nuclear Polarization. Angewandte Chemie - International Edition, 2011, 50, 8367-8370.	13.8	115
33	Linear resistance model of the inhibition mechanism of steel in HCl by triazole and oxadiazole derivatives: structure–activity correlations. Corrosion Science, 2003, 45, 371-380.	6.6	114
34	Magnesium Chelating 2-Hydroxyisoquinoline-1,3(2 <i>H</i> ,4 <i>H</i>)-diones, as Inhibitors of HIV-1 Integrase and/or the HIV-1 Reverse Transcriptase Ribonuclease H Domain: Discovery of a Novel Selective Inhibitor of the Ribonuclease H Function. Journal of Medicinal Chemistry, 2011, 54, 1812-1824.	6.4	113
35	Electrochemical characterization of lithium $4,4\hat{a}\in^2$ -tolane-dicarboxylate for use as a negative electrode in Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 1615-1620.	6.7	112
36	On the relationship between corrosion inhibiting effect and molecular structure of 2,5-bis(n-pyridyl)-1,3,4-thiadiazole derivatives in acidic media: Ac impedance and DFT studies. Corrosion Science, 2011, 53, 487-495.	6.6	109

#	Article	IF	Citations
37	Effect of the substitution of an oxygen atom by sulphur in a pyridazinic molecule towards inhibition of corrosion of steel in 0.5M H2SO4 medium. Progress in Organic Coatings, 2004, 51, 118-124.	3.9	102
38	The splanchnic metabolism of flavonoids highly differed according to the nature of the compound. American Journal of Physiology - Renal Physiology, 2003, 284, G980-G988.	3.4	101
39	Insights into the Catalytic Activity of Nitridated Fibrous Silica (KCCâ€1) Nanocatalysts from ¹⁵ N and ²⁹ Siâ€NMR Spectroscopy Enhanced by Dynamic Nuclear Polarization. Angewandte Chemie - International Edition, 2015, 54, 2190-2193.	13.8	101
40	Investigation of the Redox Behavior of Ferroquine, a New Antimalarial. Molecular Pharmaceutics, 2008, 5, 710-716.	4.6	100
41	Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening. Journal of Chemical Physics, 2012, 136, 014503.	3.0	95
42	PMS activation using reduced graphene oxide under sonication: Efficient metal-free catalytic system for the degradation of rhodamine B, bisphenol A, and tetracycline. Ultrasonics Sonochemistry, 2019, 52, 164-175.	8.2	89
43	Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber. Optics Express, 2013, 21, 8382.	3.4	85
44	A Fluoro Analogue of the Menadione Derivative 6-[2 -(3 -Methyl)-1 ,4 -naphthoquinolyl]hexanoic Acid Is a Suicide Substrate of Glutathione Reductase. Crystal Structure of the Alkylated Human Enzymeâ€. Journal of the American Chemical Society, 2006, 128, 10784-10794.	13.7	84
45	DNA cleavage by hydroxy-salicylidene-ethylendiamine-iron complexes. Nucleic Acids Research, 1999, 27, 4160-4166.	14.5	82
46	Electrochemical and Quantum Chemical Studies of 3,5-Di(n-Tolyl)-4-Amino-1,2,4-Triazole Adsorption on Mild Steel in Acidic Media. Corrosion, 2002, 58, 399-407.	1.1	82
47	Extreme deuterium enrichment of organic radicals in the Orgueil meteorite: Revisiting the interstellar interpretation?. Geochimica Et Cosmochimica Acta, 2008, 72, 1914-1923.	3.9	80
48	Ligand Contributions to the Electronic Structures of the Oxidized Cobalt(II) salen Complexes. Inorganic Chemistry, 2012, 51, 10557-10571.	4.0	80
49	Radical Localization in a Series of Symmetric Ni ^{II} Complexes with Oxidized Salen Ligands. Chemistry - A European Journal, 2012, 18, 14117-14127.	3.3	76
50	Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Physical Chemistry Chemical Physics, 2013, 15, 5553.	2.8	76
51	Development of stable and efficient CeVO4 systems for the selective reduction of NOx by ammonia: Structure-activity relationship. Applied Catalysis B: Environmental, 2017, 218, 338-348.	20.2	76
52	Coherent Storage of Microwave Excitations in Rare-Earth Nuclear Spins. Physical Review Letters, 2015, 114, 170503.	7.8	70
53	Probing ²⁷ Alâ€" ¹³ C proximities in metalâ€"organic frameworks using dynamic nuclear polarization enhanced NMR spectroscopy. Chemical Communications, 2014, 50, 933-935.	4.1	67
54	Highly productive iron molybdate mixed oxides and their relevant catalytic properties for direct synthesis of 1,1-dimethoxymethane from methanol. Applied Catalysis B: Environmental, 2014, 145, 126-135.	20.2	63

#	Article	IF	Citations
55	The effect of length and cis/trans relationship of conjugated pathway on secondary battery performance in organolithium electrodes. Electrochemistry Communications, 2010, 12, 1348-1351.	4.7	62
56	Indirect and direct ²⁹ Si dynamic nuclear polarization of dispersed nanoparticles. Chemical Communications, 2013, 49, 2864-2866.	4.1	62
57	State of the art in nail dosimetry: free radicals identification and reaction mechanisms. Radiation and Environmental Biophysics, 2014, 53, 291-303.	1.4	61
58	Solid-State NMR of the Family of Positive Electrode Materials Li ₂ Ru _{1â€"<i>y</i>} Sn _{<i>y</i>} O ₃ for Lithium-Ion Batteries. Chemistry of Materials, 2014, 26, 7009-7019.	6.7	59
59	Oneâ€Electron Oxidized Copper(II) Salophen Complexes: Phenoxyl versus Diiminobenzene Radical Species. Chemistry - A European Journal, 2012, 18, 1068-1072.	3.3	57
60	Copper Sorption on a Straw Lignin: Experiments and EPR Characterization. Journal of Colloid and Interface Science, 2002, 245, 24-31.	9.4	54
61	Inhibiting effects of some oxadiazole derivatives on the corrosion of mild steel in perchloric acid solution. Applied Surface Science, 2005, 252, 950-958.	6.1	52
62	Mechanistic insights on the ethanol transformation into hydrocarbons over HZSM-5 zeolite. Chemical Engineering Journal, 2010, 161, 403-408.	12.7	52
63	Cu1.1V4O11:  A New Positive Electrode Material for Rechargeable Li Batteries. Chemistry of Materials, 2005, 17, 418-426.	6.7	50
64	Catalytic oxidation of methanol on Mo/Al2O3 catalyst: An EPR and Raman/infrared operando spectroscopies study. Catalysis Today, 2006, 113, 34-39.	4.4	50
65	Ag ₄ V ₂ O ₆ F ₂ (SVOF): A High Silver Density Phase and Potential New Cathode Material for Implantable Cardioverter Defibrillators. Inorganic Chemistry, 2008, 47, 8464-8472.	4.0	50
66	Growth mechanism of coke on HBEA zeolite during ethanol transformation. Journal of Catalysis, 2013, 299, 284-297.	6.2	50
67	New routes for complete regeneration of coked zeolite. Applied Catalysis B: Environmental, 2017, 219, 82-91.	20.2	50
68	Structural Characterization and Iron(III) Binding Ability of Dimeric and Polymeric Lignin Models. Journal of Colloid and Interface Science, 2001, 239, 39-48.	9.4	47
69	Antioxidant properties of 3-hydroxycoumarin derivatives. Bioorganic and Medicinal Chemistry, 2004, 12, 5611-5618.	3.0	47
70	Topoisomerase Inhibitors of Marine Origin and Their Potential Use as Anticancer Agents. Topics in Current Chemistry, 0, , 89-108.	4.0	47
71	Electrochemical Study of Substituted Triazoles Adsorption on Mild Steel. Industrial & amp; Engineering Chemistry Research, 2000, 39, 3732-3736.	3.7	46
72	lminosemiquinone radical ligands enable access to a well-defined redox-active Cu ^{ll} –CF ₃ complex. Chemical Communications, 2014, 50, 10394-10397.	4.1	43

#	Article	IF	CITATIONS
73	La1-x(Sr, Na, K)xMnO3 perovskites for HCHO oxidation: The role of oxygen species on the catalytic mechanism. Applied Catalysis B: Environmental, 2021, 287, 119955.	20.2	42
74	Radical Species Detection and Their Nature Evolution with Catalyst Deactivation in the Ethanol-to-Hydrocarbon Reaction over HZSM-5 Zeolite. ACS Catalysis, 2011, 1, 417-424.	11.2	41
75	EPR of Radicals in Primitive Organic Matter: A Tool for the Search of Biosignatures of the Most Ancient Traces of Life. Applied Magnetic Resonance, 2008, 33, 371-397.	1.2	40
76	Titanium(III) Sulfate as New Negative Electrode for Sodium-Ion Batteries. Chemistry of Materials, 2013, 25, 2391-2393.	6.7	40
77	Electron-Hole Pairs Stabilized in Al-ZSM-5 Zeolites. Angewandte Chemie - International Edition, 2002, 41, 1241-1244.	13.8	39
78	Spectroscopic Studies of Diketoacidsâ°'Metal Interactions. A Probing Tool for the Pharmacophoric Intermetallic Distance in the HIV-1 Integrase Active Site. Journal of Medicinal Chemistry, 2004, 47, 5583-5586.	6.4	39
79	Polyphenols Deriving from Chalcones:  Investigations of Redox Activities. Journal of Physical Chemistry B, 2005, 109, 23720-23729.	2.6	39
80	Across the Structural Re-Entrant Transition in BaFe ₂ (PO ₄) ₂ : Influence of the Two-Dimensional Ferromagnetism. Journal of the American Chemical Society, 2013, 135, 13023-13029.	13.7	38
81	NMR and EPR Characterization of Functionalized Nanodiamonds. Journal of Physical Chemistry C, 2015, 119, 12408-12422.	3.1	36
82	Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging. Nature Communications, 2021, 12, 1410.	12.8	35
83	Intermolecular Magnetic Couplings in the Dinuclear Copper(II) Complexμ-Chloro-μ-[2,5-bis(2-pyridyl)-1,3,4-thiadiazole] Aqua Chlorocopper(II) Dichlorocopper(II):Â Synthesis, Crystal Structure, and EPR and Magnetic Characterization. Inorganic Chemistry, 2004, 43, 1865-1873.	4.0	34
84	EPR, ENDOR, and HYSCORE Study of the Structure and the Stability of Vanadylâ^Porphyrin Complexes Encapsulated in Silica: Potential Paramagnetic Biomarkers for the Origin of Life. Journal of Physical Chemistry B, 2010, 114, 3714-3725.	2.6	34
85	Iodine Uptake by Zr-/Hf-Based UiO-66 Materials: The Influence of Metal Substitution on Iodine Evolution. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29916-29933.	8.0	34
86	Solvent-Free High-Field Dynamic Nuclear Polarization of Mesoporous Silica Functionalized with TEMPO. Applied Magnetic Resonance, 2012, 43, 237-250.	1.2	33
87	Circumventing Intrinsic Metal Reactivity: Radical Generation with Redoxâ€Active Ligands. Chemistry - A European Journal, 2017, 23, 15030-15034.	3.3	33
88	Salen Complexes as Fire Protective Agents for Thermoplastic Polyurethane: Deep Electron Paramagnetic Resonance Spectroscopy Investigation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24860-24875.	8.0	33
89	Spontaneous ionization and electron transfer of polyaromatics by sorption in ZSM-5 zeolites. Comptes Rendus Chimie, 2005, 8, 419-440.	0.5	32
90	Studies of polylactide/zinc oxide nanocomposites: influence of surface treatment on zinc oxide antibacterial activities in textile nanocomposites. Journal of Applied Polymer Science, 2015, 132, .	2.6	32

#	Article	IF	Citations
91	Applications of Pulsed Electron Paramagnetic Resonance Spectroscopy to the Identification of Vanadyl Complexes in Asphaltene Molecules. Part 1: Influence of the Origin of the Feed. Energy & Samp; Fuels, 2015, 29, 4608-4615.	5.1	32
92	Long-Lived Radical Cationâ^Electron Pairs Generated by Anthracene Sorption in Non Brønsted Acidic Zeolites. Journal of Physical Chemistry B, 2005, 109, 3723-3726.	2.6	31
93	Electrochemical Reactivity of Li2VOSiO4toward Li. Chemistry of Materials, 2006, 18, 407-412.	6.7	31
94	On the involvement of radical "coke―in ethanol conversion to hydrocarbons over HZSM-5 zeolite. Catalysis Today, 2013, 218-219, 57-64.	4.4	31
95	Câ^'N Bond Formation from a Masked Highâ€Valent Copper Complex Stabilized by Redox Nonâ€Innocent Ligands. Angewandte Chemie - International Edition, 2016, 55, 10712-10716.	13.8	31
96	Induced effect of tungsten incorporation on the catalytic properties of CeVO4 systems for the selective reduction of NOx by ammonia. Applied Catalysis B: Environmental, 2018, 234, 318-328.	20.2	31
97	Structural and transport evolution in the LixAg2V4O11 system. Journal of Power Sources, 2010, 195, 1195-1201.	7.8	30
98	Amplitude of Pancreatic Lipase Lid Opening in Solution and Identification of Spin Label Conformational Subensembles by Combining Continuous Wave and Pulsed EPR Spectroscopy and Molecular Dynamics. Biochemistry, 2010, 49, 2140-2149.	2.5	30
99	The deuterium/hydrogen distribution in chondritic organic matter attests to early ionizing irradiation. Nature Communications, 2015, 6, 8567.	12.8	30
100	4-Mercaptoimidazoles derived from the naturally occurring antioxidant ovothiols 2. Computational and experimental approach of the radical scavenging mechanism. Free Radical Research, 2000, 32, 525-533.	3.3	29
101	Reduction of Ln ₂ Ti ₂ O ₇ Layered Perovskites: A Survey of the Anionic Lattice, Electronic Features, and Potentials. Chemistry of Materials, 2017, 29, 1047-1057.	6.7	29
102	The Camptothecin-Resistant Topoisomerase I Mutant F361S Is Cross-Resistant to Antitumor Rebeccamycin Derivatives. A Model for Topoisomerase I Inhibition by Indolocarbazoles. Biochemistry, 1999, 38, 8605-8611.	2.5	28
103	Reaction of caffeic acid derivatives with acidic nitrite. Tetrahedron Letters, 2001, 42, 3303-3305.	1.4	28
104	Oxovanadium(IV) and oxovanadium(IV)-barium(II) complexes with heterotopic macrocyclic ligands based on isothiosemicarbazide. Inorganica Chimica Acta, 2001, 317, 33-44.	2.4	28
105	Recent advances on the ageing of flame retarded PLA: Effect of UV-light and/or relative humidity. Polymer Degradation and Stability, 2017, 139, 143-164.	5.8	28
106	Copperâ€Catalyzed Aziridination with Redoxâ€Active Ligands: Molecular Spin Catalysis. Chemistry - A European Journal, 2018, 24, 5086-5090.	3.3	28
107	Free radical production by hydroxy-salen manganese complexes studied by ESR and XANES. Journal of Inorganic Biochemistry, 2002, 92, 177-182.	3.5	27
108	Generation and Migration of Electrons and Holes during Naphthalene Sorption in Acidic Al-ZSM-5 Zeolites. Journal of Physical Chemistry B, 2003, 107, 8935-8945.	2.6	27

#	Article	IF	Citations
109	Slow Interfacial Electron Hole Transfer of atrans-Stilbene Radical Cation Photoinduced in a Channel of Nonacidic Aluminum Rich ZSM-5 Zeolite. Journal of Physical Chemistry C, 2007, 111, 2310-2317.	3.1	26
110	Identification of the EPR signal of S2â°' in green ultramarine pigments. Physical Chemistry Chemical Physics, 2011, 13, 9253.	2.8	26
111	Influence of Confinement Effect on Electron Transfers Induced by <i>t-</i> Stilbene Sorption in Medium Pore Acidic Zeolites. Journal of Physical Chemistry C, 2012, 116, 1812-1825.	3.1	26
112	Activation of anionic redox in d0 transition metal chalcogenides by anion doping. Nature Communications, 2021, 12, 5485.	12.8	26
113	Temperature-Dependent Interconversion of an Anthracene Radical Cation/Electron Moiety to an Electron–Hole Pair in the Pores of Al-ZSM-5 Zeolites. Angewandte Chemie - International Edition, 2003, 42, 5587-5591.	13.8	25
114	Syntheses and crystal structures of two mononuclear Zn(II) complexes with the 2,5-bis(2-pyridyl)-1,3,4-thiadiazole ligand. Polyhedron, 2004, 23, 1903-1907.	2.2	25
115	Remote nitrogen plasma treatment of a polyethylene powderOptimisation of the process by composite experimental designs. Applied Surface Science, 2004, 239, 25-35.	6.1	25
116	Long Lived Charge Separated States Induced by <i>trans</i> Stilbene Incorporation in the Pores of BrÃ,nsted Acidic HZSM-5 Zeolites: Effect of Gallium on the Spontaneous Ionization Process. Journal of Physical Chemistry C, 2010, 114, 10280-10290.	3.1	25
117	The fate of Cu pesticides in vineyard soils: A case study using \hat{l} 65Cu isotope ratios and EPR analysis. Chemical Geology, 2018, 477, 35-46.	3.3	25
118	Synthesis of metal complexes of 2,9-bis(2-hydroxyphenyl)-1,10-phenanthroline and their DNA binding and cleaving activities. Journal of the Chemical Society Perkin Transactions II, 1998, , 863-868.	0.9	24
119	4-Mercaptoimidazoles derived from the naturally occurring antioxidant ovothiols 1. Antioxidant properties. Free Radical Research, 2000, 32, 515-524.	3.3	24
120	Synthesis and antioxidant properties of a new lipophilic ascorbic acid analogue. Bioorganic and Medicinal Chemistry, 2003, 11, 1087-1093.	3.0	24
121	A transesterification reaction is implicated in the covalent binding of benzo[b]acronycine anticancer agents with DNA and glutathion. Bioorganic and Medicinal Chemistry, 2004, 12, 23-29.	3.0	24
122	Biradical character of D-rich carriers in the insoluble organic matter of carbonaceous chondrites: A relic of the protoplanetary disk chemistry. Geochimica Et Cosmochimica Acta, 2011, 75, 326-336.	3.9	24
123	Addition of N-Heterocyclic Carbenes to a Ruthenium(VI) Nitrido Polyoxometalate: a New Route to Cyclic Guanidines. Inorganic Chemistry, 2011, 50, 2501-2506.	4.0	24
124	Exploring the trifluoromenadione core as a template to design antimalarial redox-active agents interacting with glutathione reductase. Organic and Biomolecular Chemistry, 2012, 10, 4795.	2.8	24
125	Conformational Selection Underlies Recognition of a Molybdoenzyme by Its Dedicated Chaperone. PLoS ONE, 2012, 7, e49523.	2.5	24
126	An improved procedure for the deamination of symmetrical 3,5â€disubstituted 4â€aminoâ€1,2,4â€triazoles. Journal of Heterocyclic Chemistry, 2002, 39, 93-96.	2.6	23

#	Article	IF	CITATIONS
127	Series of Hydrated Heterometallic Uranyl-Cobalt(II) Coordination Polymers with Aromatic Polycarboxylate Ligands: Formation of Uâ•O—Co Bonding upon Dehydration Process. Inorganic Chemistry, 2016, 55, 10453-10466.	4.0	23
128	Capture of Gaseous Iodine in Isoreticular Zirconiumâ€Based UiOâ€n Metalâ€Organic Frameworks: Influence of Amino Functionalization, DFT Calculations, Raman and EPR Spectroscopic Investigation. Chemistry - A European Journal, 2022, 28, e202104437.	3.3	23
129	Conformational dynamics of protein transporter <scp>FhaC</scp> : largeâ€scale motions of plug helix. Molecular Microbiology, 2014, 92, 1164-1176.	2.5	22
130	trans-Stilbene Incorporation in Acidic Medium-Pore ZSM-5 Zeolite: A Pulsed EPR Study. ChemPhysChem, 2006, 7, 2474-2477.	2.1	21
131	Multianalytical Study of Historical Luminescent Lithopone for the Detection of Impurities and Trace Metal Ions. Analytical Chemistry, 2015, 87, 6049-6056.	6.5	21
132	Extraterrestrial organic matter preserved in 3.33†Ga sediments from Barberton, South Africa. Geochimica Et Cosmochimica Acta, 2019, 258, 207-225.	3.9	21
133	xmins:mmi= http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	3.2	20
134	Cobalt sulfide-reduced graphene oxide: An efficient catalyst for the degradation of rhodamine B and pentachlorophenol using peroxymonosulfate. Journal of Environmental Chemical Engineering, 2021, 9, 106018.	6.7	20
135	Interaction of the malonyldialdehyde molecule with membranes. Biochemical Pharmacology, 1992, 44, 1787-1793.	4.4	19
136	Long-Lived Spin-Correlated Pairs Generated by Photolysis of Naphthalene Occluded in Non-Brønsted Acidic ZSM-5 Zeolites. Journal of the American Chemical Society, 2005, 127, 15417-15428.	13.7	19
137	Isotopic and structural signature of experimentally irradiated organic matter. Geochimica Et Cosmochimica Acta, 2014, 142, 522-534.	3.9	19
138	Signal Transduction by BvgS Sensor Kinase. Journal of Biological Chemistry, 2015, 290, 23307-23319.	3.4	19
139	Energy level structure and optical dephasing under magnetic field in Er3+:LiYF4 at 1.5 \hat{l} /4m. Journal of Luminescence, 2016, 169, 478-482.	3.1	18
140	Non-homogeneous distribution of Al3+ in doped phosphate glasses revealed by 27Al/31P solid state NMR. Solid State Nuclear Magnetic Resonance, 2017, 84, 137-142.	2.3	18
141	New Bis-catechols 5-lipoxygenase inhibitors. Bioorganic and Medicinal Chemistry, 2001, 9, 229-235.	3.0	17
142	Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization. Journal of Alloys and Compounds, 2017, 695, 2339-2346.	5.5	17
143	Spontaneous Charge Separation and Recombination Induced by Tetracene Incorporation in Pores of Acidic H <i>_n</i> ZSM-5 Zeolites. Journal of Physical Chemistry C, 2007, 111, 17346-17356.	3.1	16
144	Kinetics and characterization of photoinduced long-lived electron–hole pair of p-terphenyl occluded in ZSM-5 zeolites. Effects of aluminium content and extraframework cation. Physical Chemistry Chemical Physics, 2009, 11, 11022.	2.8	16

#	Article	IF	CITATIONS
145	Cysteine-grafted nonwoven geotextile: A new and efficient material for heavy metals sorption – Part B. Journal of Environmental Management, 2014, 143, 99-105.	7.8	16
146	Insertion of MoO ₃ in Borophosphate Glasses Investigated by Magnetic Resonance Spectroscopies. Journal of Physical Chemistry C, 2016, 120, 9443-9452.	3.1	16
147	Structural insights into Lewis acid- and F4TCNQ-doped conjugated polymers by solid-state magnetic resonance spectroscopy. Materials Horizons, 2022, 9, 981-990.	12.2	16
148	Incorporation and electron transfer of anthracene in pores of ZSM-5 zeolites. Effect of BrÃ,nsted acid site density. Physical Chemistry Chemical Physics, 2009, 11, 6299.	2.8	15
149	Piperidine aminoxyl radicals as EPR probes for exploring the cavity of a water-soluble cryptophane. Chemical Communications, 1996, , 719.	4.1	14
150	DNA Topoisomerase II Inhibition by Peroxisomicine A1 and Its Radical Metabolite Induces Apoptotic Cell Death of HL-60 and HL-60/MX2 Human Leukemia Cells. Chemical Research in Toxicology, 2001, 14, 16-24.	3.3	14
151	Potassium-controlled synthesis of heterotopic macrocycles based on isothiosemicarbazide. Inorganica Chimica Acta, 2002, 328, 123-133.	2.4	14
152	New NSAIDs-NO hybrid molecules with antiproliferative properties on human prostatic cancer cell lines. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4655-4657.	2.2	14
153	Ethanol transformation into higher hydrocarbons over HZSM-5 zeolite: Direct detection of radical species by in situ EPR spectroscopy. Catalysis Communications, 2012, 27, 119-123.	3.3	14
154	Redox-switchable tetra-copper assembly of N,N-, N,O-phenolate-phenanthroimidazolate bridging ligands. Dalton Transactions, 2013, 42, 2358.	3.3	14
155	Electrochemical activity and high ionic conductivity of lithium copper pyroborate Li ₆ CuB ₄ O ₁₀ . Physical Chemistry Chemical Physics, 2016, 18, 14960-14969.	2.8	14
156	Optimizing Group Transfer Catalysis by Copper Complex with Redox-Active Ligand in an Entatic State. IScience, 2020, 23, 100955.	4.1	14
157	Proanthocyanidin microcapsules: preparation, properties and free radical scavenging activity. International Journal of Pharmaceutics, 1998, 171, 217-226.	5.2	13
158	Structural characterization of iron–alumino–silicate glasses. Journal of Non-Crystalline Solids, 2004, 345-346, 66-69.	3.1	13
159	Spontaneous charge separation induced by phenothiazine sorption within acidic HnZSM-5. Physical Chemistry Chemical Physics, 2009, 11, 4286.	2.8	13
160	New 2-arylnaphthalenediols and triol inhibitors of HIV-1 integraseâ€"Discovery of a new polyhydroxylated antiviral agent. Bioorganic and Medicinal Chemistry, 2010, 18, 5194-5201.	3.0	13
161	Description of the Intermediate Length Scale Structural Motifs in Sodium Vanado-phosphate Glasses by Magnetic Resonance Spectroscopies. Journal of Physical Chemistry C, 2013, 117, 1421-1427.	3.1	13
162	Copper(II) coordination chain complex with the 2,5-bis(2-pyridyl)-1,3,4-thiadiazole ligand and an asymmetric $1\frac{1}{4}$ 2-1,1-azido double-bridged: Synthesis, crystal structure and magnetic properties. Journal of Molecular Structure, 2016, 1123, 400-406.	3.6	13

#	Article	IF	Citations
163	Sample Ripening through Nanophase Separation Influences the Performance of Dynamic Nuclear Polarization. Angewandte Chemie - International Edition, 2018, 57, 5171-5175.	13.8	13
164	Applications of Pulsed Electron Paramagnetic Resonance Spectroscopy to the Identification of Vanadyl Complexes in Asphaltene Molecules. Part 2: Hydrotreatment Monitoring. Energy & Samp; Fuels, 2017, 31, 3288-3294.	5.1	12
165	Electron Transfers Induced by <i>t</i> -Stilbene Sorption in Acidic Aluminum, Gallium, and Boron Beta (BEA) Zeolites. Journal of Physical Chemistry C, 2012, 116, 14480-14490.	3.1	11
166	New chemometric approach MCR-ALS to unmix EPR spectroscopic data from complex mixtures. Journal of Magnetic Resonance, 2014, 248, 27-35.	2.1	11
167	Dynamic interplay of membraneâ€proximal <scp>POTRA</scp> domain and conserved loop <scp>L</scp> 6 in <scp>O</scp> mp85 transporter <scp>FhaC</scp> . Molecular Microbiology, 2015, 98, 490-501.	2.5	11
168	Probing the aluminum complexation by Siberian riverine organic matter using solid-state DNP-NMR. Chemical Geology, 2017, 452, 1-8.	3.3	11
169	Formation of copper nanoparticles in LTL nanosized zeolite: spectroscopic characterization. Physical Chemistry Chemical Physics, 2018, 20, 2880-2889.	2.8	11
170	Magnetic hexamers interacting in layers in the (Na,K)2Cu3O(SO4)3 minerals. Physical Review B, 2020, 102, .	3.2	11
171	Indolocarbazole Glycosides in Inactive Conformations. ChemBioChem, 2003, 4, 386-395.	2.6	10
172	Structural characterisation of [Cu2(bptd) (H2O) Cl4] and [Ni2(bptd)2(H2O)4] Cl4·3H2O; evidence of null intramolecular exchanges by EPR and magnetic measurements. Journal of Physics and Chemistry of Solids, 2004, 65, 701-705.	4.0	10
173	Binary cerium(IV) tert-butoxides-dialkylmagnesium systems: Radical versus coordinative polymerization of styrene. Journal of Molecular Catalysis A, 2005, 238, 207-214.	4.8	10
174	Genotoxicity of tungsten carbide–cobalt (WC–Co) nanoparticles in vitro: Mechanisms-of-action studies. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 779, 15-22.	1.7	10
175	Methanol and ethanol conversion into hydrocarbons over H-ZSM-5 catalyst. European Physical Journal: Special Topics, 2015, 224, 1817-1830.	2.6	10
176	Anisotropic longitudinal electronic relaxation affects DNP at cryogenic temperatures. Physical Chemistry Chemical Physics, 2017, 19, 16087-16094.	2.8	10
177	The radical internal coke structure as a fingerprint of the zeolite framework. Microporous and Mesoporous Materials, 2019, 289, 109617.	4.4	10
178	A Switch between Two Intrinsically Disordered Conformational Ensembles Modulates the Active Site of a Basic-Helix–Loop–Helix Transcription Factor. Journal of Physical Chemistry Letters, 2020, 11, 8944-8951.	4.6	10
179	Heteroleptic Ruthenium(II) Complexes with Bathophenanthroline and Bathophenanthroline Disulfonate Disodium Salt as Fluorescent Dyes for In-Gel Protein Staining. Inorganic Chemistry, 2020, 59, 4527-4535.	4.0	10
180	Giant titanium electron wave function in gallium oxide: A potential electron-nuclear spin system for quantum information processing. Physical Review B, 2010, 82, .	3.2	9

#	Article	IF	CITATIONS
181	Structural, spectroscopic and redox properties of a mononuclear CoII thiolate complex $\hat{a} \in \text{``the}$ reactivity toward S-alkylation: an experimental and theoretical study. Dalton Transactions, 2012, 41, 12586.	3.3	9
100	Application of Magnetic Resonance Spectroscopies to the <i>x</i> ZnO–(100 –) Tj ETQq0 0 0 rgBT /Overlock		•
182	Doping. Journal of Physical Chemistry C, 2015, 119, 17288-17297.	3.1	9
183	Electron Transfers in Donor–Acceptor Supramolecular Systems: Highlighting the Dual Donor and Acceptor Role of ZSM-5 Zeolite. Journal of Physical Chemistry C, 2016, 120, 17372-17385.	3.1	9
184	PTFE supported gold nanoparticles as photocatalysts for oxidative esterification of aldehydes. New Journal of Chemistry, 2016, 40, 9460-9470.	2.8	9
185	Conformational tuning of a DNA-bound transcription factor. Nucleic Acids Research, 2019, 47, 5429-5435.	14.5	9
186	Experimental protection of quantum coherence by using a phase-tunable image drive. Scientific Reports, 2020, 10, 21643.	3.3	9
187	Understanding the p-doping of spiroOMeTAD by tris(pentafluorophenyl)borane. Electrochimica Acta, 2022, 424, 140602.	5. 2	9
188	CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: Solving a lineshape paradox. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 69, 1301-1310.	3.9	8
189	Extraction of Pure Spectral Signatures and Corresponding Chemical Maps from EPR Imaging Data Sets: Identifying Defects on a CaF ₂ Surface Due to a Laser Beam Exposure. Analytical Chemistry, 2015, 87, 3929-3935.	6.5	8
190	Câ^'N Bond Formation from a Masked Highâ€Valent Copper Complex Stabilized by Redox Nonâ€Innocent Ligands. Angewandte Chemie, 2016, 128, 10870-10874.	2.0	8
191	Crown Compounds Containing a 1,3,4-Thiadiazole Moiety: Microwave Assisted Synthesis, Crystal Structure and Quantum Calculations. Heterocycles, 2005, 65, 2847.	0.7	8
192	New metallomacrocyclic complexes based on acetamidrazone. Inorganica Chimica Acta, 2000, 303, 228-237.	2.4	7
193	Plasma stability of two glycosyl indolocarbazole antitumor agents. Biochemical Pharmacology, 2003, 65, 25-34.	4.4	7
194	Nuclear Magnetic Biosignatures in the Carbonaceous Matter of Ancient Cherts: Comparison with Carbonaceous Meteorites. Astrobiology, 2013, 13, 932-947.	3.0	7
195	Electron transfers in a TiO ₂ -containing MOR zeolite: synthesis of the nanoassemblies and application using a probe chromophore molecule. Physical Chemistry Chemical Physics, 2014, 16, 13145-13155.	2.8	7
196	Nanochanneled silver-deficient tris(oxalato)chromate(III) coordination polymers: Synthesis, crystal structure, spectroscopy, thermal analysis and magnetism. Journal of Molecular Structure, 2020, 1220, 128642.	3.6	7
197	Two isostructural oxalato-bridged dimetallic heptanuclear [Ball3MIII4] complexes (MÂ=ÂCr; Fe) associated with 3-aminopyridinium cations: Synthesis, crystal structure and magnetic properties. Polyhedron, 2021, 193, 114885.	2.2	7
198	Experimental and Ab Initio Characterization of Mononuclear Molybdenum Dithiocarbamates in Lubricant Mixtures. Langmuir, 2021, 37, 4836-4846.	3.5	7

#	Article	IF	CITATIONS
199	A comparison of four assays detecting oxidizing species. Biological Trace Element Research, 1995, 47, 29-36.	3.5	6
200	EPR of free radicals formed from 3-hydroxyesculetin and related derivatives. Research on Chemical Intermediates, 2003, 29, 365-377.	2.7	6
201	Site-Specific Cleavage of the HIV-1 TAR RNA by a Hydroxysalen-Copper(III) Complex. ChemBioChem, 2003, 4, 112-114.	2.6	6
202	Influence of Gallium Isomorphous Substitution in the Acidic MFI Zeolite Framework on Hole Formation, Transfer, and Trapping upon Incorporation of Anthracene. Journal of Physical Chemistry C, 2011, 115, 6635-6643.	3.1	6
203	Comparison between Spontaneous and Photoinduced Ionization Mechanisms for p-Quaterphenyl in M-ZSM-5 ($M = H+$, $Na+$) Zeolites. Journal of Physical Chemistry C, 2013, 117, 20625-20635.	3.1	6
204	Origin of the decoherence of the extended electron spin state in Ti-doped β-Ga ₂ O ₃ . Journal of Physics Condensed Matter, 2013, 25, 316002.	1.8	6
205	Coherent spin dynamics of solitons in the organic spin chain compounds <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mo>(<mml:mrow><mml:mo>(X<mml:mo>=</mml:mo><mml:mi>Cl</mml:mi><mml< td=""><td>:mo><mm :n302>,<td>l:mi>o</td></mm nbmo><mm< td=""></mm<></td></mml<></mml:mo></mml:mrow></mml:mo></mml:mrow></mml:msub></mml:mrow></mml:math>	:mo> <mm :n302>,<td>l:mi>o</td></mm n b mo> <mm< td=""></mm<>	l:mi>o
206	E, 2019, 100, Layered Sodium Titanium Trichalcogenide Na ₂ TiCh ₃ Framework (Ch = S, Se): A Rich Crystal and Electrochemical Chemistry. Chemistry of Materials, 2022, 34, 2382-2392.	6.7	6
207	Fluidity of Chicken Ventricular Plasma Membranes During Development in-ovo and after Birth: Spin Labelling and Fluorescence Studies. Journal of Molecular and Cellular Cardiology, 1993, 25, 1439-1444.	1.9	5
208	The reaction of methyl isoferulate with FeCl3 or Ag2Oâ€"hypothesis on the biosynthesis of lithospermic acids and related nor and neolignans. Tetrahedron Letters, 2003, 44, 3289-3292.	1.4	5
209	lonization and protonation of aromatic diamines by sorption in zeolites. Journal of Molecular Structure, 2003, 651-653, 305-314.	3.6	5
210	Effect of analytical proton beam irradiation on lead-white pigments, characterized by EPR spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2018, 415, 64-71.	1.4	5
211	Effect of Thermal Treatment of Different Petroleum Fractions: Characterization by In Situ EPR Spectroscopy. Energy & Ene	5.1	5
212	EPR Spin-Trapping Study of Free Radical Intermediates in Polyalphaolefin Base Oil Autoxidation. Polymer Degradation and Stability, 2021, 192, 109687.	5.8	5
213	Reifung von Proben beeinflusst die Effizienz der Kernpolarisation. Angewandte Chemie, 2018, 130, 5267-5271.	2.0	4
214	Tris(oxalato)chromate(III) hybrid salts templated by pyridinium and mixed pyridinium-ammonium cations: synthesis, structures and magnetism. Journal of Coordination Chemistry, 2021, 74, 1209-1221.	2.2	4
215	DNA binding properties of the indolocarbazole antitumor drug NB-506. Anti-cancer Drug Design, 2001, 16, 99-107. Electron-spin interaction in the spin-Peierls phase of the organic spin chain (<mml:math) 0="" etqq0="" over<="" rgbt="" td="" tj=""><td>0.3 lock 10 Tf</td><td>4 50 82 Td (xr</td></mml:math)>	0.3 lock 10 Tf	4 50 82 Td (xr
216	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> (<mml:math) etqq0<="" pre="" tj=""></mml:math)></pre>		

 $$$ {\bf xmml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub><mml:mi>X</mml:mi></mml:mrow></mml:math> (<mml:math) Tj ETQq0 0 0 rgBT /0 verlock 10 rgBT /0 ve$

#	Article	IF	Citations
217	In situ EPR investigation of sulfur vulcanization mechanism and ageing process. Polymer Degradation and Stability, 2022, 203, 110066.	5.8	4
218	How do zeolite-templated carbons grow?. Materials Today Chemistry, 2022, 26, 101053.	3.5	4
219	Keggin (K5, H3O)[SiV3W9O40H]·xH2O: Characterization and crystal structure. Journal of Solid State Chemistry, 2014, 213, 9-16.	2.9	3
220	New strategy to identify radicals in a time evolving EPR data set by multivariate curve resolution-alternating least squares. Analytica Chimica Acta, 2016, 947, 9-15.	5.4	3
221	Photoinduced electron transfers after t-stilbene incorporation in zeolite. Effect of the presence of an electron acceptor on the reactivity. Microporous and Mesoporous Materials, 2017, 254, 128-135.	4.4	3
222	Electron Transfers Under Confinement in Channel-Type Zeolites., 2019,, 249-271.		3
223	Electron Spin Resonance of Defects in Spin Chains—\$\$hbox {o}-(hbox {DMTTF})_2hbox {X}\$\$: A Versatile System Behaving Like Molecular Magnet. Applied Magnetic Resonance, 2020, 51, 1307-1320.	1.2	3
224	EPR imaging of sinapyl alcohol and its application to the study of plant cell wall lignification. Chemical Communications, 2021, 57, 387-390.	4.1	3
225	Antioxidant Properties and Aldehyde Reactivity of PD-L1 Targeted Aryl-Pyrazolone Anticancer Agents. Molecules, 2022, 27, 3316.	3.8	3
226	2-[5-(2-Pyridyl)-1,2,4-triazol-3-yl]phenol 7,7,8,8-tetracyanoquinodimethane, PTP–TCNQ, synthesis, structure and physical properties. Journal of Molecular Structure, 2002, 607, 31-41.	3.6	2
227	In Vivo Modification of the UDP-Glucuronosyltransferase Functional State in Rat Liver Following Hypophysectomy and Partial or Complete Hormonal Restoration. Journal of Biochemistry, 2003, 134, 641-653.	1.7	2
228	Insight into the structure of black coatings of ancient Egyptian mummies by advanced electron magnetic resonance of vanadyl complexes. Magnetic Resonance, 2022, 3, 111-124.	1.9	2
229	13CO exchange process between the hemoglobin irons observed with 13C NMR. Chemical Physics Letters, 2001, 344, 457-462.	2.6	1
230	Synthesis, x-ray structure and spectroscopic and electronic properties of two new synthesized flavones. Journal of Physical Organic Chemistry, 2004, 17, 226-235.	1.9	1
231	Remote nitrogen plasma treatment of a polyethylene powder. Applied Surface Science, 2004, 239, 25-35.	6.1	1
232	Matrix effect on the degradation of fragrant aldehydes: oxidation versus chlorination in an antiperspirant formulation. Flavour and Fragrance Journal, 2013, 28, 316-326.	2.6	1
233	Impact of Thermal Aging on the SCR Performance of Tungsten Doped CeVO4 Mixed Oxides. Topics in Catalysis, 2019, 62, 49-55.	2.8	1
234	Electron transfers in graphitized HZSM-5 zeolites. Physical Chemistry Chemical Physics, 2021, 23, 1914-1922.	2.8	1

#	Article	IF	CITATIONS
235	High-Performance Group Transfer Catalysis by Copper Complex with Redox-Active Ligand in an Entatic State. SSRN Electronic Journal, 0, , .	0.4	1
236	Comparative study of the fluidity of plasma and disc membranes of bovine rod outer segments by electron-spin resonance. Molecular Membrane Biology, 1997, 14, 31-33.	2.0	0
237	Charge transfer during diphenyl-polyene sorption in acidic ZSM-5 zeolite: a primordial reaction for catalysis processes. Studies in Surface Science and Catalysis, 2008, 174, 1131-1134.	1.5	0
238	EPR of Primitive Organic Matter: A Tool for Astrobiology. , 2014, , 541-577.		0