Rui Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5880305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioavailability of Tea Catechins and Its Improvement. Molecules, 2018, 23, 2346.	1.7	182
2	Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chemistry, 2014, 149, 307-312.	4.2	133
3	Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability. Food Research International, 2014, 62, 1147-1153.	2.9	109
4	Synthesis of homogeneous protein-stabilized rutin nanodispersions by reversible assembly of soybean (Glycine max) seed ferritin. RSC Advances, 2015, 5, 31533-31540.	1.7	60
5	Simultaneous Decoloration and Deproteinization of Crude Polysaccharide from Pumpkin Residues by Cross-Linked Polystyrene Macroporous Resin. Journal of Agricultural and Food Chemistry, 2012, 60, 8450-8456.	2.4	55
6	Ferritin, a novel vehicle for iron supplementation and food nutritional factors encapsulation. Trends in Food Science and Technology, 2015, 44, 189-200.	7.8	54
7	Urea-Driven Epigallocatechin Gallate (EGCG) Permeation into the Ferritin Cage, an Innovative Method for Fabrication of Protein–Polyphenol Co-assemblies. Journal of Agricultural and Food Chemistry, 2017, 65, 1410-1419.	2.4	49
8	Effect of atmospheric cold plasma on structure, activity, and reversible assembly of the phytoferritin. Food Chemistry, 2018, 264, 41-48.	4.2	39
9	Epigallocatechin Gallate (EGCG) Decorating Soybean Seed Ferritin as a Rutin Nanocarrier with Prolonged Release Property in the Gastrointestinal Tract. Plant Foods for Human Nutrition, 2016, 71, 277-285.	1.4	36
10	Fabrication, structure, and function evaluation of the ferritin based nano-carrier for food bioactive compounds. Food Chemistry, 2019, 299, 125097.	4.2	36
11	Rheological and textural properties of acid-induced soybean protein isolate gel in the presence of soybean protein isolate hydrolysates or their glycosylated products. Food Chemistry, 2021, 360, 129991.	4.2	36
12	Food-Grade Encapsulation Systems for (â^')-Epigallocatechin Gallate. Molecules, 2018, 23, 445.	1.7	35
13	The gut microbiota community and antioxidant enzymes activity of barramundi reared at seawater and freshwater. Fish and Shellfish Immunology, 2019, 89, 127-131.	1.6	34
14	Ferritin glycosylated by chitosan as a novel EGCG nano-carrier: Structure, stability, and absorption analysis. International Journal of Biological Macromolecules, 2017, 105, 252-261.	3.6	33
15	Nano-encapsulation of epigallocatechin gallate in the ferritin-chitosan double shells: Simulated digestion and absorption evaluation. Food Research International, 2018, 108, 1-7.	2.9	33
16	Channel directed rutin nano-encapsulation in phytoferritin induced by guanidine hydrochloride. Food Chemistry, 2018, 240, 935-939.	4.2	32
17	A Novel Approach to Prepare Protein-proanthocyanidins Nano-complexes by the Reversible Assembly of Ferritin Cage. Food Science and Technology Research, 2017, 23, 329-337.	0.3	28
18	Transglutaminase induced oligochitosan glycosylation of ferritin as a novel nanocarrier for food bioactive molecules. Food Hydrocolloids, 2019, 94, 500-509.	5.6	28

Rui Yang

#	Article	IF	CITATIONS
19	Fabrication and characterization of ferritin–chitosan–lutein shell–core nanocomposites and lutein stability and release evaluation in vitro. RSC Advances, 2016, 6, 35267-35279.	1.7	26
20	Interaction mechanism of ferritin protein with chlorogenic acid and iron ion: The structure, iron redox, and polymerization evaluation. Food Chemistry, 2021, 349, 129144.	4.2	25
21	Thermally Induced Encapsulation of Food Nutrients into Phytoferritin through the Flexible Channels without Additives. Journal of Agricultural and Food Chemistry, 2017, 65, 9950-9955.	2.4	23
22	Influence of Manothermosonication on the Physicochemical and Functional Properties of Ferritin as a Nanocarrier of Iron or Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2019, 67, 6633-6641.	2.4	19
23	Saccharification of Pumpkin Residues by Coculturing of <i>Trichoderma reesei</i> RUT-C30 and <i>Phanerochaete chrysosporium</i> Burdsall with Delayed Inoculation Timing. Journal of Agricultural and Food Chemistry, 2013, 61, 9192-9199.	2.4	18
24	Double-Interface Binding of Two Bioactive Compounds with Cage-Like Ferritin. Journal of Agricultural and Food Chemistry, 2020, 68, 7779-7788.	2.4	18
25	Coencapsulation and Stability Evaluation of Hydrophilic and Hydrophobic Bioactive Compounds in a Cagelike Phytoferritin. Journal of Agricultural and Food Chemistry, 2020, 68, 3238-3249.	2.4	17
26	Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase. Ecotoxicology and Environmental Safety, 2018, 148, 721-728.	2.9	16
27	Pulsed Electric Fields-Modified Ferritin Realizes Loading of Rutin by a Moderate pH Transition. Journal of Agricultural and Food Chemistry, 2018, 66, 12404-12411.	2.4	16
28	The formation of phycocyanin-EGCG complex for improving the color protection stability exposing to light. Food Chemistry, 2022, 370, 130985.	4.2	16
29	One-step fabrication of phytoferritin-chitosan-epigallocatechin shell-core nanoparticles by thermal treatment. Food Hydrocolloids, 2018, 80, 24-32.	5.6	14
30	The interaction of DNA with phytoferritin during iron oxidation. Food Chemistry, 2014, 153, 292-297.	4.2	11
31	Thermal Stability Improvement of Rice Bran Albumin Protein Incorporated with Epigallocatechin Gallate. Journal of Food Science, 2017, 82, 350-357.	1.5	11
32	Alcalase Enzymolysis of Red Bean (adzuki) Ferritin Achieves Nanoencapsulation of Food Nutrients in a Mild Condition. Journal of Agricultural and Food Chemistry, 2018, 66, 1999-2007.	2.4	11
33	Chitosan binding onto the epigallocatechin-loaded ferritin nanocage enhances its transport across Caco-2 cells. Food and Function, 2018, 9, 2015-2024.	2.1	11
34	The structure and stability analysis of the pea seed legumin glycosylated by oligochitosan. Journal of the Science of Food and Agriculture, 2021, 101, 1065-1075.	1.7	10
35	Proteins from leguminous plants: from structure, property to the function in encapsulation/binding and delivery of bioactive compounds. Critical Reviews in Food Science and Nutrition, 2022, 62, 5203-5223.	5.4	8
36	Self-Assembly of Phycoerythrin with Oligochitosan by Electrostatic Interaction for Stabilization of Phycoerythrin. Journal of Agricultural and Food Chemistry, 2021, 69, 12818-12827.	2.4	8

Rui Yang

#	Article	IF	CITATIONS
37	Succinylated ferritin as a novel nanocage-like vehicle of polyphenol: Structure, stability, and absorption analysis. Food Chemistry, 2021, 361, 130069.	4.2	6
38	Fabrication of a ferritin–casein phosphopeptide–calcium shell–core composite as a novel calcium delivery strategy. Food and Function, 2021, 12, 11378-11386.	2.1	6
39	Chaotrope-Controlled Fabrication of Ferritin–Salvianolic Acid B- Epigallocatechin Gallate Three-Layer Nanoparticle by the Flexibility of Ferritin Channels. Journal of Agricultural and Food Chemistry, 2021, 69, 12314-12322.	2.4	6
40	Starch propionylation acts as novel encapsulant for probiotic bacteria: A structural and functional analysis. International Journal of Biological Macromolecules, 2022, 213, 11-18.	3.6	5
41	Interaction between rice bran albumin and epigallocatechin gallate and their physicochemical analysis. Food Science and Biotechnology, 2018, 27, 1561-1569.	1.2	3
42	Microelectric Current Treatment Enhanced Biodegradation of Pumpkin Lignocelluloses by <i>Trichoderma reesei</i> RUT-C30. Journal of Agricultural and Food Chemistry, 2017, 65, 4668-4675.	2.4	1
43	Toxicity of antimony in 18 soils of China evaluated by soil dehydrogenase activity. Soil Science Society of America Journal, 2022, 86, 703-713.	1.2	0