
Hajime Fujikura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5880231/publications.pdf Version: 2024-02-01

HAIIME FIIIKIIDA

#	Article	IF	CITATIONS
1	Isochronal annealing study of Mg-implanted p-type GaN activated by ultra-high-pressure annealing. Applied Physics Express, 2021, 14, 056501.	2.4	14
2	Substantial and simultaneous reduction of major electron traps and residual carbon in homoepitaxial GaN layers. Applied Physics Letters, 2021, 118, .	3.3	5
3	Roles of carbon impurities and intrinsic nonradiative recombination centers on the carrier recombination processes of GaN crystals. Applied Physics Express, 2020, 13, 012004.	2.4	20
4	Homo-epitaxial growth of n-GaN layers free from carbon-induced mobility collapse and off-angle-dependent doping variation by quartz-free hydride vapor phase epitaxy. Applied Physics Letters, 2020, 117, .	3.3	42
5	Deep-level transient spectroscopy studies of electron and hole traps in n-type GaN homoepitaxial layers grown by quartz-free hydride-vapor-phase epitaxy. Applied Physics Letters, 2019, 115, .	3.3	37
6	Growth of InGaN films on hardness-controlled bulk GaN substrates. Applied Physics Letters, 2019, 115, 172102.	3.3	1
7	Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy. Applied Physics Express, 2018, 11, 045502.	2.4	26
8	Roughening of GaN homoepitaxial surfaces due to step meandering and bunching instabilities and their suppression in hydride vapor phase epitaxy. Applied Physics Letters, 2018, 113, .	3.3	23
9	Macrodefect-free, large, and thick GaN bulk crystals for high-quality 2–6 in. GaN substrates by hydride vapor phase epitaxy with hardness control. Japanese Journal of Applied Physics, 2018, 57, 065502.	1.5	32
10	Recent progress of high-quality GaN substrates by HVPE method. Proceedings of SPIE, 2017, , .	0.8	25
11	Fabrication of large flat gallium nitride templates with extremely low dislocation densities in the 106cmâ^2 range by novel two-side hydride vapor-phase epitaxial growth. Journal of Crystal Growth, 2017, 475, 208-215.	1.5	6
12	Hydride-vapor-phase epitaxial growth of highly pure GaN layers with smooth as-grown surfaces on freestanding GaN substrates. Japanese Journal of Applied Physics, 2017, 56, 085503.	1.5	74
13	Hardness control for improvement of dislocation reduction in HVPE-grown freestanding GaN substrates. Journal of Crystal Growth, 2012, 350, 38-43.	1.5	14
14	Realization of Low Dislocation GaN/Sapphire Wafers by 3-Step Metalorganic Vapor Phase Epitaxial Growth with Island Induced Dislocation Control. Japanese Journal of Applied Physics, 2003, 42, 2767-2772.	1.5	19
15	Formation of device-oriented InGaAs coupled quantum structures by selective MBE growth on patterned InP substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 864-869.	2.7	17
16	Scanning tunneling microscopy and spectroscopy study of ultrathin Si interface control layers grown on (001) GaAs for surface passivation. Applied Surface Science, 2000, 159-160, 292-300.	6.1	1
17	Molecular-Beam Epitaxy and Device Applications of III-V Semiconductor Nanowires. MRS Bulletin, 1999, 24, 25-30.	3.5	32
18	Control of Dot Size and Tunneling Barrier Profile in In0.53Ga0.47As Coupled Quantum Wire-Dot Structures Grown by Selective Molecular Beam Epitaxy on Patterned InP Substrates. Japanese Journal of Applied Physics, 1999, 38, 421-424.	1.5	2

Hajime Fujikura

#	Article	IF	CITATIONS
19	Selective molecular beam epitaxy growth of quantum wire–dot coupled structures with novel high index facets for InGaAs single electron transistor arrays. Microelectronics Journal, 1999, 30, 397-401.	2.0	3
20	Realization of InP-Based InGaAs single electron transistors on wires and dots grown by selective MBE. Microelectronic Engineering, 1999, 47, 201-203.	2.4	0
21	Direct formation of InGaAs coupled quantum wire–dot structures by selective molecular beam epitaxy on InP patterned substrates. Solid-State Electronics, 1998, 42, 1413-1417.	1.4	10
22	Controlled Formation of Narrow and Uniform InP-Based In0.53Ga0.47As Ridge Quantum Wire Arrays by Selective Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1998, 37, 1532-1539.	1.5	15
23	Fabrication of InGaAs Quantum Wires and Dots by Selective Molecular Beam Epitaxial Growth on Various Mesa-Patterned (001)InP Substrates. Japanese Journal of Applied Physics, 1997, 36, 1763-1769.	1.5	33
24	Photoluminescence and Cathodoluminescence Investigation of Optical Properties of InP-Based InGaAs Ridge Quantum Wires Formed by Selective Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1996, 35, 1333-1339.	1.5	17
25	Surface passivation of In0.53Ga0.47As ridge quantum wires using silicon interface control layers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 2888.	1.6	22
26	Fabrication of InGaAs Wires by Preferential Molecular Beam Epitaxy Growth on Corrugated InP Substrate. Japanese Journal of Applied Physics, 1994, 33, 919-924.	1.5	12
27	Interface profile optimization in novel surface passivation scheme for InGaAs nanostructures using Si interface control layer. Journal of Electronic Materials, 1993, 22, 289-295.	2.2	8
28	Reappraisal of Si-Interlayer-Induced Change of Band Discontinuity at GaAs-AlAs Heterointerface Taking Account of Delta-Doping. Japanese Journal of Applied Physics, 1992, 31, L1012-L1014.	1.5	21