Zhi-Gang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5880212/publications.pdf Version: 2024-02-01

		57631	82410
133	6,311	44	72
papers	citations	h-index	g-index
137	137	137	6493
all docs	docs citations	times ranked	citing authors

ZHI-GANC MANC

#	Article	IF	CITATIONS
1	Oxygen-Deficient Black Titania for Synergistic/Enhanced Sonodynamic and Photoinduced Cancer Therapy at Near Infrared-II Biowindow. ACS Nano, 2018, 12, 4545-4555.	7.3	361
2	Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes. Nature Biomedical Engineering, 2017, 1, .	11.6	188
3	Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation. Biomaterials, 2012, 33, 5854-5864.	5.7	185
4	Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials, 2013, 34, 2307-2317.	5.7	183
5	Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials, 2018, 165, 1-13.	5.7	173
6	Microbubbles from Gasâ€Generating Perfluorohexane Nanoemulsions for Targeted Temperature‧ensitive Ultrasonography and Synergistic HIFU Ablation of Tumors. Advanced Materials, 2013, 25, 4123-4130.	11.1	160
7	Mitochondria-Targeted and Ultrasound-Activated Nanodroplets for Enhanced Deep-Penetration Sonodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 9355-9366.	4.0	139
8	Mitochondriaâ€Targeted Artificial "Nanoâ€RBCs―for Amplified Synergistic Cancer Phototherapy by a Single NIR Irradiation. Advanced Science, 2018, 5, 1800049.	5.6	138
9	Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound. Theranostics, 2018, 8, 1327-1339.	4.6	138
10	Mitochondria-Targeting Polydopamine Nanoparticles To Deliver Doxorubicin for Overcoming Drug Resistance. ACS Applied Materials & Interfaces, 2017, 9, 16793-16802.	4.0	135
11	Endogenous Catalytic Generation of O ₂ Bubbles for <i>In Situ</i> Ultrasound-Guided High Intensity Focused Ultrasound Ablation. ACS Nano, 2017, 11, 9093-9102.	7.3	133
12	Low-Intensity Focused Ultrasound-Responsive Phase-Transitional Nanoparticles for Thrombolysis without Vascular Damage: A Synergistic Nonpharmaceutical Strategy. ACS Nano, 2019, 13, 3387-3403.	7.3	118
13	Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and Synergistic Targeted therapy of residual tumor during HIFU ablation. Biomaterials, 2014, 35, 5148-5161.	5.7	116
14	Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice. Journal of Controlled Release, 2012, 162, 349-354.	4.8	103
15	Construction and Evaluation of Fe ₃ O ₄ -Based PLGA Nanoparticles Carrying rtPA Used in the Detection of Thrombosis and in Targeted Thrombolysis. ACS Applied Materials & Interfaces, 2014, 6, 5566-5576.	4.0	95
16	Phase-Shifted PFH@PLGA/Fe ₃ O ₄ Nanocapsules for MRI/US Imaging and Photothermal Therapy with near-Infrared Irradiation. ACS Applied Materials & Interfaces, 2015, 7, 14231-14242.	4.0	95
17	Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy. Nanoscale, 2016, 8, 4324-4339.	2.8	95
18	Peptide-Functionalized Phase-Transformation Nanoparticles for Low Intensity Focused Ultrasound-Assisted Tumor Imaging and Therapy. Nano Letters, 2018, 18, 1831-1841.	4.5	93

#	Article	IF	CITATIONS
19	Antitumor Effect of Docetaxel-Loaded Lipid Microbubbles Combined With Ultrasound-Targeted Microbubble Activation on VX2 Rabbit Liver Tumors. Journal of Ultrasound in Medicine, 2010, 29, 61-70.	0.8	92
20	Nanosonosensitizers for Highly Efficient Sonodynamic Cancer Theranostics. Theranostics, 2018, 8, 6178-6194.	4.6	89
21	Bioinspired Multifunctional Melanin-Based Nanoliposome for Photoacoustic/Magnetic Resonance Imaging-Guided Efficient Photothermal Ablation of Cancer. Theranostics, 2018, 8, 1591-1606.	4.6	88
22	A Multifunctional Theranostic Nanoagent for Dual-Mode Image-Guided HIFU/Chemo- Synergistic Cancer Therapy. Theranostics, 2016, 6, 404-417.	4.6	85
23	Photothermal therapy mediated by phase-transformation nanoparticles facilitates delivery of anti-PD1 antibody and synergizes with antitumor immunotherapy for melanoma. Journal of Controlled Release, 2019, 306, 15-28.	4.8	84
24	In Vivo Targeted, Responsive, and Synergistic Cancer Nanotheranostics by Magnetic Resonance Imaging-Guided Synergistic High-Intensity Focused Ultrasound Ablation and Chemotherapy. ACS Applied Materials & Interfaces, 2018, 10, 15428-15441.	4.0	80
25	Cell-penetrating Peptide-modified Targeted Drug-loaded Phase-transformation Lipid Nanoparticles Combined with Low-intensity Focused Ultrasound for Precision Theranostics against Hepatocellular Carcinoma. Theranostics, 2018, 8, 1892-1910.	4.6	80
26	A Laser-Activated Biocompatible Theranostic Nanoagent for Targeted Multimodal Imaging and Photothermal Therapy. Theranostics, 2017, 7, 4410-4423.	4.6	79
27	Multifunctional Polypyrroleâ€Coated Mesoporous TiO ₂ Nanocomposites for Photothermal, Sonodynamic, and Chemotherapeutic Treatments and Dualâ€Modal Ultrasound/Photoacoustic Imaging of Tumors. Advanced Healthcare Materials, 2019, 8, e1801254.	3.9	74
28	Injectable Smart Phaseâ€Transformation Implants for Highly Efficient In Vivo Magneticâ€Hyperthermia Regression of Tumors. Advanced Materials, 2014, 26, 7468-7473.	11.1	72
29	Artificial Nanotargeted Cells with Stable Photothermal Performance for Multimodal Imaging-Guided Tumor-Specific Therapy. ACS Nano, 2020, 14, 12652-12667.	7.3	72
30	Protein-Activatable Diarylethene Monomer as a Smart Trigger of Noninvasive Control Over Reversible Generation of Singlet Oxygen: A Facile, Switchable, Theranostic Strategy for Photodynamic-Immunotherapy. Journal of the American Chemical Society, 2021, 143, 2413-2422.	6.6	72
31	Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide- co -glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer. International Journal of Nanomedicine, 2017, Volume 12, 5313-5330.	3.3	71
32	India Ink Incorporated Multifunctional Phase-transition Nanodroplets for Photoacoustic/Ultrasound Dual-modality Imaging and Photoacoustic Effect Based Tumor Therapy. Theranostics, 2014, 4, 1026-1038.	4.6	67
33	Graphene-Templated Synthesis of Magnetic Metal Organic Framework Nanocomposites for Selective Enrichment of Biomolecules. ACS Applied Materials & Interfaces, 2016, 8, 10234-10242.	4.0	66
34	Targeted Antiangiogenesis Gene Therapy Using Targeted Cationic Microbubbles Conjugated with CD105 Antibody Compared with Untargeted Cationic and Neutral Microbubbles. Theranostics, 2015, 5, 399-417.	4.6	63
35	The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells. Ultrasonics, 2013, 53, 232-238.	2.1	61
36	Laserâ€Activatible PLGA Microparticles for Imageâ€Guided Cancer Therapy In Vivo. Advanced Functional Materials, 2014, 24, 7674-7680.	7.8	59

#	Article	IF	CITATIONS
37	Nanomedicine Enables Drug-Potency Activation with Tumor Sensitivity and Hyperthermia Synergy in the Second Near-Infrared Biowindow. ACS Nano, 2021, 15, 6457-6470.	7.3	58
38	Gdâ€ÐTPAâ€loaded PLGA microbubbles as both ultrasound contrast agent and MRI contrast agent—A feasibility research. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 551-556.	1.6	52
39	<div>Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging</div> . International Journal of Nanomedicine, 2017, Volume 12, 911-923.	3.3	50
40	Low-intensity focused ultrasound (LIFU)-activated nanodroplets as a theranostic agent for noninvasive cancer molecular imaging and drug delivery. Biomaterials Science, 2018, 6, 2838-2849.	2.6	50
41	SR-A-Targeted Phase-Transition Nanoparticles for the Detection and Treatment of Atherosclerotic Vulnerable Plaques. ACS Applied Materials & Interfaces, 2019, 11, 9702-9715.	4.0	50
42	Increased photodynamic therapy sensitization in tumors using a nitric oxide-based nanoplatform with ATP-production blocking capability. Theranostics, 2021, 11, 1953-1969.	4.6	49
43	Phase Transition Nanoparticles as Multimodality Contrast Agents for the Detection of Thrombi and for Targeting Thrombolysis: in Vitro and in Vivo Experiments. ACS Applied Materials & Interfaces, 2017, 9, 42525-42535.	4.0	48
44	Folate-Targeted and Oxygen/Indocyanine Green-Loaded Lipid Nanoparticles for Dual-Mode Imaging and Photo-sonodynamic/Photothermal Therapy of Ovarian Cancer in Vitro and in Vivo. Molecular Pharmaceutics, 2019, 16, 4104-4120.	2.3	48
45	Silk Fibroin-Coated Nanoagents for Acidic Lysosome Targeting by a Functional Preservation Strategy in Cancer Chemotherapy. Theranostics, 2019, 9, 961-973.	4.6	48
46	Multifunctional Nanoparticles for Multimodal Imaging-Guided Low-Intensity Focused Ultrasound/Immunosynergistic Retinoblastoma Therapy. ACS Applied Materials & Interfaces, 2020, 12, 5642-5657.	4.0	47
47	Low-intensity focused ultrasound-augmented Cascade chemodynamic therapy via boosting ROS generation. Biomaterials, 2021, 271, 120710.	5.7	45
48	Folate-receptor-targeted laser-activable poly(lactide- co -glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy. International Journal of Nanomedicine, 2018, Volume 13, 5139-5158.	3.3	42
49	Effective Gene Transfer into Central Nervous System FollowingÂUltrasound-Microbubbles-Induced Opening of theÂBlood-Brain Barrier. Ultrasound in Medicine and Biology, 2012, 38, 1234-1243.	0.7	41
50	<p>The Destruction Of Laser-Induced Phase-Transition Nanoparticles Triggered By Low-Intensity Ultrasound: An Innovative Modality To Enhance The Immunological Treatment Of Ovarian Cancer Cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 9377-9393.	3.3	41
51	Enhanced Photoacoustic and Photothermal Effect of Functionalized Polypyrrole Nanoparticles for Near-Infrared Theranostic Treatment of Tumor. Biomacromolecules, 2019, 20, 401-411.	2.6	41
52	A hydrogen peroxide economizer for on-demand oxygen production-assisted robust sonodynamic immunotherapy. Theranostics, 2022, 12, 59-75.	4.6	40
53	Magnetic nanobubbles with potential for targeted drug delivery and trimodal imaging in breast cancer: an <i>in vitro</i> study. Nanomedicine, 2017, 12, 991-1009.	1.7	38
54	Oxygen and indocyanine green loaded phase-transition nanoparticle-mediated photo-sonodynamic cytotoxic effects on rheumatoid arthritis fibroblast-like synoviocytes. International Journal of Nanomedicine, 2017, Volume 12, 381-393.	3.3	38

#	Article	IF	CITATIONS
55	Folate-targeted perfluorohexane nanoparticles carrying bismuth sulfide for use in US/CT dual-mode imaging and synergistic high-intensity focused ultrasound ablation of cervical cancer. Journal of Materials Chemistry B, 2016, 4, 4164-4181.	2.9	36
56	Oxygen and oxaliplatin-loaded nanoparticles combined with photo-sonodynamic inducing enhanced immunogenic cell death in syngeneic mouse models of ovarian cancer. Journal of Controlled Release, 2021, 332, 448-459.	4.8	36
57	Low-intensity focused ultrasound mediated localized drug delivery for liver tumors in rabbits. Drug Delivery, 2016, 23, 2280-2289.	2.5	35
58	IR780-based light-responsive nanocomplexes combining phase transition for enhancing multimodal imaging-guided photothermal therapy. Biomaterials Science, 2019, 7, 1132-1146.	2.6	35
59	TME-activatable theranostic nanoplatform with ATP burning capability for tumor sensitization and synergistic therapy. Theranostics, 2020, 10, 6987-7001.	4.6	35
60	<p>IR780-loaded folate-targeted nanoparticles for near-infrared fluorescence image-guided surgery and photothermal therapy in ovarian cancer</p> . International Journal of Nanomedicine, 2019, Volume 14, 2757-2772.	3.3	34
61	A mitochondria-targeted anticancer nanoplatform with deep penetration for enhanced synergistic sonodynamic and starvation therapy. Biomaterials Science, 2020, 8, 4581-4594.	2.6	33
62	Dual mitigation of immunosuppression combined with photothermal inhibition for highly effective primary tumor and metastases therapy. Biomaterials, 2021, 274, 120856.	5.7	32
63	Fe ₃ 0 ₄ -based PLGA nanoparticles as MR contrast agents for the detection of thrombosis. International Journal of Nanomedicine, 2017, Volume 12, 1113-1126.	3.3	31
64	Dual ultrasound-activatable nanodroplets for highly-penetrative and efficient ovarian cancer theranostics. Journal of Materials Chemistry B, 2020, 8, 380-390.	2.9	31
65	Nearâ€Infrared II Nanoadjuvantâ€Mediated Chemodynamic, Photodynamic, and Photothermal Therapy Combines Immunogenic Cell Death with PDâ€L1 Blockade to Enhance Antitumor Immunity. Small, 2022, 18, e2107809.	5.2	31
66	Magnetic nanoparticle-promoted droplet vaporization for in vivo stimuli-responsive cancer theranostics. NPG Asia Materials, 2016, 8, e313-e313.	3.8	30
67	Preoccupation of Empty Carriers Decreases Endo-/Lysosome Escape and Reduces the Protein Delivery Efficiency of Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 5340-5347.	4.0	29
68	A preliminary study of photoacoustic/ultrasound dual-mode imaging in melanoma using MAGE-targeted gold nanoparticles. Biochemical and Biophysical Research Communications, 2018, 502, 255-261.	1.0	29
69	<p>Cell penetrating peptide-modified nanoparticles for tumor targeted imaging and synergistic effect of sonodynamic/HIFU therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 5875-5894.	3.3	29
70	Microwave-activated nanodroplet vaporization for highly efficient tumor ablation with real-time monitoring performance. Biomaterials, 2016, 106, 264-275.	5.7	28
71	PA/US dual-modality imaging to guide VEGFR-2 targeted photothermal therapy using ZnPc-/PFH-loaded polymeric nanoparticles. Biomaterials Science, 2018, 6, 2130-2143.	2.6	28
72	Melanin-loaded biocompatible photosensitive nanoparticles for controlled drug release in combined photothermal-chemotherapy guided by photoacoustic/ultrasound dual-modality imaging. Biomaterials Science, 2019, 7, 4060-4074.	2.6	27

#	Article	IF	CITATIONS
73	Low intensity focused ultrasound (LIFU) triggered drug release from cetuximab-conjugated phase-changeable nanoparticles for precision theranostics against anaplastic thyroid carcinoma. Biomaterials Science, 2019, 7, 196-210.	2.6	27
74	A near-infrared laser and H2O2 activated bio-nanoreactor for enhanced photodynamic therapy of hypoxic tumors. Biomaterials Science, 2020, 8, 858-870.	2.6	27
75	A multimodal imaging-guided nanoreactor for cooperative combination of tumor starvation and multiple mechanism-enhanced mild temperature phototherapy. Biomaterials Science, 2020, 8, 6561-6578.	2.6	27
76	Experimental Research on Therapeutic Angiogenesis Induced by Hepatocyte Growth Factor Directed by Ultrasound-Targeted Microbubble Destruction in Rats. Journal of Ultrasound in Medicine, 2008, 27, 453-460.	0.8	26
77	Synergistic effects of ultrasound-targeted microbubble destruction and TAT peptide on gene transfection: An experimental study in vitro and in vivo. Journal of Controlled Release, 2013, 170, 437-444.	4.8	26
78	Phase-transitional Fe ₃ O ₄ /perfluorohexane Microspheres for Magnetic Droplet Vaporization. Theranostics, 2017, 7, 846-854.	4.6	26
79	Dual-mode imaging and therapeutic effects of drug-loaded phase-transition nanoparticles combined with near-infrared laser and low-intensity ultrasound on ovarian cancer. Drug Delivery, 2018, 25, 1683-1693.	2.5	26
80	A Novel Ultrasound Microbubble Carrying Gene and Tat Peptide: Preparation and Characterization. Academic Radiology, 2009, 16, 1457-1465.	1.3	25
81	Perfluorohexane-encapsulated fullerene nanospheres for dual-modality US/CT imaging and synergistic high-intensity focused ultrasound ablation. International Journal of Nanomedicine, 2019, Volume 14, 519-529.	3.3	25
82	Mitochondria-targeted nanoplatforms for enhanced photodynamic therapy against hypoxia tumor. Journal of Nanobiotechnology, 2021, 19, 440.	4.2	24
83	ROS-responsive liposomes as an inhaled drug delivery nanoplatform for idiopathic pulmonary fibrosis treatment via Nrf2 signaling. Journal of Nanobiotechnology, 2022, 20, 213.	4.2	24
84	Herceptin-decorated paclitaxel-loaded poly(lactide- <i>co</i> -glycolide) nanobubbles: ultrasound-facilitated release and targeted accumulation in breast cancers. Pharmaceutical Development and Technology, 2020, 25, 454-463.	1.1	23
85	Hypoxia modulation by dual-drug nanoparticles for enhanced synergistic sonodynamic and starvation therapy. Journal of Nanobiotechnology, 2021, 19, 87.	4.2	23
86	Combating multidrug resistance and metastasis of breast cancer by endoplasmic reticulum stress and cell-nucleus penetration enhanced immunochemotherapy. Theranostics, 2022, 12, 2987-3006.	4.6	23
87	Antithrombotic Therapy by Regulating the ROSâ€Mediated Thrombosis Microenvironment and Specific Nonpharmaceutical Thrombolysis Using Prussian Blue Nanodroplets. Small, 2022, 18, e2106252.	5.2	23
88	Transfection Efficiency of TDL Compound in HUVEC Enhanced by Ultrasound-Targeted Microbubble Destruction. Ultrasound in Medicine and Biology, 2008, 34, 1857-1867.	0.7	21
89	LIFU-responsive nanomedicine enables acoustic droplet vaporization-induced apoptosis of macrophages for stabilizing vulnerable atherosclerotic plaques. Bioactive Materials, 2022, 16, 120-133.	8.6	21
90	Shear Wave Elastography of the Spleen for Monitoring Transjugular Intrahepatic Portosystemic Shunt Function. Journal of Ultrasound in Medicine, 2016, 35, 951-958.	0.8	20

#	Article	IF	CITATIONS
91	Multimodal and multifunctional nanoparticles with platelet targeting ability and phase transition efficiency for the molecular imaging and thrombolysis of coronary microthrombi. Biomaterials Science, 2020, 8, 5047-5060.	2.6	20
92	A laser-activated multifunctional targeted nanoagent for imaging and gene therapy in a mouse xenograft model with retinoblastoma Y79 cells. Acta Biomaterialia, 2018, 70, 211-226.	4.1	18
93	Amplified antitumor efficacy by a targeted drug retention and chemosensitization strategy-based "combo―nanoagent together with PD-L1 blockade in reversing multidrug resistance. Journal of Nanobiotechnology, 2021, 19, 200.	4.2	18
94	Preparation and characterization of gadolinium-loaded PLGA particles surface modified with RGDS for the detection of thrombus. International Journal of Nanomedicine, 2013, 8, 3745.	3.3	17
95	Cancer Therapy: Mitochondriaâ€Targeted Artificial "Nanoâ€RBCs―for Amplified Synergistic Cancer Phototherapy by a Single NIR Irradiation (Adv. Sci. 8/2018). Advanced Science, 2018, 5, 1870050.	5.6	17
96	Thrombin-responsive engineered nanoexcavator with full-thickness infiltration capability for pharmaceutical-free deep venous thrombosis theranostics. Biomaterials Science, 2020, 8, 4545-4558.	2.6	17
97	iRGD Peptide-Mediated Liposomal Nanoparticles with Photoacoustic/Ultrasound Dual-Modality Imaging for Precision Theranostics Against Hepatocellular Carcinoma. International Journal of Nanomedicine, 2021, Volume 16, 6455-6475.	3.3	17
98	Comparison of the synergistic effect of lipid nanobubbles and SonoVue microbubbles for high intensity focused ultrasound thermal ablation of tumors. PeerJ, 2016, 4, e1716.	0.9	17
99	A low-intensity focused ultrasound-assisted nanocomposite for advanced triple cancer therapy: local chemotherapy, therapeutic extracellular vesicles and combined immunotherapy. Biomaterials Science, 2020, 8, 6703-6717.	2.6	16
100	<p>lron(II) phthalocyanine Loaded and AS1411 Aptamer Targeting Nanoparticles: A Nanocomplex for Dual Modal Imaging and Photothermal Therapy of Breast Cancer</p> . International Journal of Nanomedicine, 2020, Volume 15, 5927-5949.	3.3	16
101	A targeted ultrasound contrast agent carrying gene and cell-penetrating peptide: Preparation and gene transfection in vitro. Colloids and Surfaces B: Biointerfaces, 2014, 121, 362-370.	2.5	15
102	<p>Targeted and pH-facilitated theranostic of orthotopic gastric cancer via phase-transformation doxorubicin-encapsulated nanoparticles enhanced by low-intensity focused ultrasound (LIFU) with reduced side effect</p> . International Journal of Nanomedicine, 2019, Volume 14, 7627-7642.	3.3	15
103	<p>Polydopamine-modified dual-ligand nanoparticles as highly effective and targeted magnetic resonance/photoacoustic dual-modality thrombus imaging agents</p> . International Journal of Nanomedicine, 2019, Volume 14, 7155-7171.	3.3	15
104	<p>A multifunctional-targeted nanoagent for dual-mode image-guided therapeutic effects on ovarian cancer cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 753-769.	3.3	15
105	Phase-shift, targeted nanoparticles for ultrasound molecular imaging by low intensity focused ultrasound irradiation. International Journal of Nanomedicine, 2018, Volume 13, 3907-3920.	3.3	14
106	Dual-modal photoacoustic and magnetic resonance tracking of tendon stem cells with PLGA/iron oxide microparticles in vitro. PLoS ONE, 2018, 13, e0193362.	1.1	14
107	A sequential targeting nanoplatform for anaplastic thyroid carcinoma theranostics. Acta Biomaterialia, 2020, 102, 367-383.	4.1	14
108	Visualized podocyte-targeting and focused ultrasound responsive glucocorticoid nano-delivery system against immune-associated nephropathy without glucocorticoid side effect. Theranostics, 2021, 11, 2670-2690.	4.6	14

#	Article	IF	CITATIONS
109	pH-Responsive Nanoparticles for Enhanced Antitumor Activity by High-Intensity Focused Ultrasound Therapy Combined with Sonodynamic Therapy. International Journal of Nanomedicine, 2022, Volume 17, 333-350.	3.3	14
110	Experimental Research of RB94 Gene Transfection IntoÂRetinoblastoma Cells Using Ultrasound-Targeted MicrobubbleÂDestruction. Ultrasound in Medicine and Biology, 2012, 38, 1058-1066.	0.7	13
111	Mesoporous composite nanoparticles for dual-modality ultrasound/magnetic resonance imaging and synergistic chemo-/thermotherapy against deep tumors. International Journal of Nanomedicine, 2017, Volume 12, 7273-7289.	3.3	13
112	The Study of Enhanced High-Intensity Focused Ultrasound Therapy by Sonodynamic N2O Microbubbles. Nanoscale Research Letters, 2019, 14, 381.	3.1	13
113	Superparamagnetic PLGA–iron oxide microspheres as contrast agents for dual-imaging and the enhancement of the effects of high-intensity focused ultrasound ablation on liver tissue. RSC Advances, 2015, 5, 35693-35703.	1.7	12
114	Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models. Scientific Reports, 2017, 7, 43408.	1.6	12
115	In Vivo Targeted Cancer Theranostics by Core/Shell‣tructured Multifunctional Prussian Blue/PLGA "Nanococktailsâ€: Particle and Particle Systems Characterization, 2018, 35, 1700306.	1.2	12
116	Combination Nanotherapeutics for Dry Eye Disease Treatment in a Rabbit Model. International Journal of Nanomedicine, 2021, Volume 16, 3613-3631.	3.3	12
117	A photothermal-hypoxia sequentially activatable phase-change nanoagent for mitochondria-targeting tumor synergistic therapy. Biomaterials Science, 2020, 8, 3116-3129.	2.6	10
118	A Fibrin Site‧pecific Nanoprobe for Imaging Fibrinâ€Rich Thrombi and Preventing Thrombus Formation in Venous Vessels. Advanced Materials, 2022, 34, e2109955.	11.1	10
119	Mitochondrial Glutathione Depletion Nanoshuttles for Oxygen-Irrelevant Free Radicals Generation: A Cascaded Hierarchical Targeting and Theranostic Strategy Against Hypoxic Tumor. ACS Applied Materials & Interfaces, 2022, 14, 13038-13055.	4.0	10
120	Dual-sonosensitizer loaded phase-transition nanoparticles with tumor-targeting for synergistically enhanced sonodynamic therapy. Biomaterials Science, 2021, 9, 6126-6141.	2.6	9
121	<p>EWVDV-Mediated Platelet-Targeting Nanoparticles for the Multimodal Imaging of Thrombi at Different Blood Flow Velocities</p> . International Journal of Nanomedicine, 2020, Volume 15, 1759-1770.	3.3	8
122	Ferrite-encapsulated nanoparticles with stable photothermal performance for multimodal imaging-guided atherosclerotic plaque neovascularization therapy. Biomaterials Science, 2021, 9, 5652-5664.	2.6	7
123	Theranostic Nanoplatform with Sequential SDT and ADV Effects in Response to Well-Programmed LIFU Irradiation for Cervical Cancer. International Journal of Nanomedicine, 2021, Volume 16, 7995-8012.	3.3	6
124	Corrigendum to "Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation―[Biomaterials 33 (2012) 5854–5864]. Biomaterials, 2015, 64, 1.	5.7	5
125	Downregulating the P2X3 receptor in the carotid body to reduce blood pressure via acoustic gene delivery in canines. Translational Research, 2021, 227, 30-41.	2.2	5
126	NIR Laser Responsive Nanoparticles for Ovarian Cancer Targeted Combination Therapy with Dual-Modal Imaging Guidance. International Journal of Nanomedicine, 2021, Volume 16, 4351-4369.	3.3	5

#	Article	IF	CITATIONS
127	Combination of microbubbles and diagnostic ultrasound at a high mechanical index for the synergistic microwave ablation of tumours. International Journal of Hyperthermia, 2017, 33, 318-326.	1.1	2
128	MAGE-Targeted Gold Nanoparticles for Ultrasound Imaging-Guided Phototherapy in Melanoma. BioMed Research International, 2020, 2020, 1-12.	0.9	2
129	Dual-modal magnetic resonance and photoacoustic tracking and outcome of transplanted tendon stem cells in the rat rotator cuff injury model. Scientific Reports, 2020, 10, 13954.	1.6	2
130	Inhibited Metastasis and Amplified Chemotherapeutic Effects by Epigene-Transfection Based on a Tumor-Targeting Nanoparticle. International Journal of Nanomedicine, 2020, Volume 15, 4483-4500.	3.3	1
131	Preparation and in�vitro study of stromal cell‑derived factor 1‑targeted Fe3O4/poly(lactic‑co‑glycolic)	TjEŢQq1	1 0.784314 1
132	Obstructive effects of ultrasonic microbubble intensifier on CHG-5 cell with survivin antisense oligonucleotides transfection. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2008, 20, 85-89.	0.7	0
133	Phase-Shift, Targeted Nanoparticles for Ultrasound Molecular Imaging by Low Intensity Focused Ultrasound Irradiation [Retraction]. International Journal of Nanomedicine, 0, Volume 17, 2751-2752.	3.3	0