
Marian Paluch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5879872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Classification of secondary relaxation in glass-formers based on dynamic properties. Journal of Chemical Physics, 2004, 120, 857-873.	3.0	726
2	Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure. Reports on Progress in Physics, 2005, 68, 1405-1478.	20.1	637
3	Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0.75Bi0.25)(Mn0.25Nb0.75)O3ceramics. Journal Physics D: Applied Physics, 2005, 38, 1450-1460.	2.8	215
4	Do Theories of the Glass Transition, in which the Structural Relaxation Time Does Not Define the Dispersion of the Structural Relaxation, Need Revision?. Journal of Physical Chemistry B, 2005, 109, 17356-17360.	2.6	210
5	Molecular Dynamics of Glass-Forming Systems. Advances in Dielectrics, 2011, , .	1.2	199
6	3D printed orodispersible films with Aripiprazole. International Journal of Pharmaceutics, 2017, 533, 413-420.	5.2	182
7	Many-Body Nature of Relaxation Processes in Glass-Forming Systems. Journal of Physical Chemistry Letters, 2012, 3, 735-743.	4.6	171
8	Does the Arrhenius Temperature Dependence of the Johari-Goldstein Relaxation Persist aboveTg?. Physical Review Letters, 2003, 91, 115701.	7.8	167
9	Broadband Dielectric Relaxation Study at Ambient and Elevated Pressure of Molecular Dynamics of Pharmaceutical: Indomethacin. Journal of Physical Chemistry B, 2009, 113, 12536-12545.	2.6	125
10	Molecular Dynamics and Physical Stability of Amorphous Anti-Inflammatory Drug: Celecoxib. Journal of Physical Chemistry B, 2010, 114, 12792-12801.	2.6	121
11	Relative contributions of thermal energy and free volume to the temperature dependence of structural relaxation in fragile glass-forming liquids. Physical Review B, 2002, 66, .	3.2	114
12	Scaling of viscous dynamics in simple liquids: theory, simulation and experiment. New Journal of Physics, 2012, 14, 113035.	2.9	111
13	Correlation between primary and secondary Johari–Goldstein relaxations in supercooled liquids: Invariance to changes in thermodynamic conditions. Journal of Chemical Physics, 2008, 128, 044512.	3.0	107
14	Dielectric Relaxation and Crystallization Kinetics of Ibuprofen at Ambient and Elevated Pressure. Journal of Physical Chemistry B, 2010, 114, 6579-6593.	2.6	106
15	Effect of pressure on the α relaxation in glycerol and xylitol. Journal of Chemical Physics, 2002, 116, 9839-9844.	3.0	98
16	Isochronal temperature–pressure superpositioning of the α-relaxation in type-A glass formers. Chemical Physics Letters, 2003, 367, 259-264.	2.6	98
17	Dynamic crossover in supercooled liquids induced by high pressure. Journal of Chemical Physics, 2003, 118, 5701-5703.	3.0	86
18	Polyisobutylene: A most unusual polymer. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46. 1390-1399.	2.1	86

#	Article	IF	CITATIONS
19	Dynamics in supercooled polyalcohols: Primary and secondary relaxation. Journal of Chemical Physics, 2002, 117, 6582-6589.	3.0	85
20	Study of molecular dynamics of pharmaceutically important protic ionic liquid-verapamil hydrochloride. I. Test of thermodynamic scaling. Journal of Chemical Physics, 2009, 131, .	3.0	84
21	Inference of the Evolution from Caged Dynamics to Cooperative Relaxation in Glass-Formers from Dielectric Relaxation Data. Journal of Physical Chemistry B, 2003, 107, 6865-6872.	2.6	83
22	Pressure and temperature dependences of the relaxation dynamics of cresolphthalein-dimethylether: Evidence of contributions from thermodynamics and molecular interactions. Journal of Chemical Physics, 2001, 114, 10872-10883.	3.0	82
23	Conductivity Mechanism in Polymerized Imidazolium-Based Protic Ionic Liquid [HSO ₃ –BVIm][OTf]: Dielectric Relaxation Studies. Macromolecules, 2014, 47, 4056-4065.	4.8	81
24	Temperature and volume effects on the change of dynamics in propylene carbonate. Physical Review E, 2004, 70, 061501.	2.1	80
25	Study of the Amorphous Glibenclamide Drug: Analysis of the Molecular Dynamics of Quenched and Cryomilled Material. Molecular Pharmaceutics, 2010, 7, 1692-1707.	4.6	79
26	Molecular Dynamics and Physical Stability of Coamorphous Ezetimib and Indapamide Mixtures. Molecular Pharmaceutics, 2015, 12, 3610-3619.	4.6	78
27	Temperature and Pressure Scaling of theαRelaxation Process in Fragile Glass Formers: A Dynamic Light Scattering Study. Physical Review Letters, 2000, 85, 2140-2143.	7.8	77
28	Does fragility depend on pressure? A dynamic light scattering study of a fragile glass-former. Journal of Chemical Physics, 2001, 114, 8048-8055.	3.0	77
29	Glass Transition Dynamics of Room-Temperature Ionic Liquid 1-Methyl-3-trimethylsilylmethylimidazolium Tetrafluoroborate. Journal of Physical Chemistry B, 2011, 115, 12709-12716.	2.6	77
30	The relative contributions of temperature and volume to structural relaxation of van der Waals molecular liquids. Journal of Chemical Physics, 2003, 118, 4578-4582.	3.0	74
31	Universal Behavior of Dielectric Responses of Glass Formers: Role of Dipole-Dipole Interactions. Physical Review Letters, 2016, 116, 025702.	7.8	73
32	Recent developments in the experimental investigations of relaxations in pharmaceuticals by dielectric techniques at ambient and elevated pressure. Advanced Drug Delivery Reviews, 2016, 100, 158-182.	13.7	73
33	Dynamics of Sorbitol at Elevated Pressure. Journal of Physical Chemistry B, 2002, 106, 12459-12463.	2.6	70
34	Pressure and Temperature Dependence of the α-Relaxation in Poly(methyltolylsiloxane). Macromolecules, 2002, 35, 7338-7342.	4.8	68
35	The True Johariâ^'Goldstein β-Relaxation of Monosaccharides. Journal of Physical Chemistry B, 2006, 110, 25045-25049.	2.6	68
36	Scaling of high-pressure viscosity data in low-molecular-weight glass-forming liquids. Physical Review B, 1999, 60, 2979-2982.	3.2	67

#	Article	IF	CITATIONS
37	Physicochemical properties of tadalafil solid dispersions – Impact of polymer on the apparent solubility and dissolution rate of tadalafil. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 106-115.	4.3	67
38	Dynamics of Salol at Elevated Pressure. Journal of Physical Chemistry A, 2003, 107, 2369-2373.	2.5	66
39	Dielectric Studies on Mobility of the Glycosidic Linkage in Seven Disaccharides. Journal of Physical Chemistry B, 2008, 112, 12816-12823.	2.6	66
40	The effect of pressure on the structural and secondary relaxations in 1,1′-bis (p-methoxyphenyl) cyclohexane. Journal of Chemical Physics, 2002, 117, 2317-2323.	3.0	65
41	Temperature and pressure dependence of the α-relaxation in polymethylphenylsiloxane. Journal of Chemical Physics, 2002, 116, 10932-10937.	3.0	65
42	Molecular mobility in liquid and glassy states of Telmisartan (TEL) studied by Broadband Dielectric Spectroscopy. European Journal of Pharmaceutical Sciences, 2009, 38, 395-404.	4.0	65
43	High Pressure as a Key Factor to Identify the Conductivity Mechanism in Protic Ionic Liquids. Physical Review Letters, 2013, 111, 225703.	7.8	65
44	A Relationship between Intermolecular Potential, Thermodynamics, and Dynamic Scaling for a Supercooled Ionic Liquid. Journal of Physical Chemistry Letters, 2010, 1, 987-992.	4.6	64
45	Recent progress on dielectric properties of protic ionic liquids. Journal of Physics Condensed Matter, 2015, 27, 073202.	1.8	64
46	Molecular dynamics of itraconazole at ambient and high pressure. Physical Chemistry Chemical Physics, 2013, 15, 20742.	2.8	62
47	Pressure and temperature dependence of structural relaxation in diglycidylether of bisphenol A. Journal of Chemical Physics, 2003, 118, 3177-3186.	3.0	61
48	Relaxation Dynamics and Crystallization Study of Sildenafil in the Liquid and Glassy States. Molecular Pharmaceutics, 2013, 10, 2270-2282.	4.6	60
49	Negative Pressure Vitrification of the Isochorically Confined Liquid in Nanopores. Physical Review Letters, 2015, 115, 265702.	7.8	60
50	Influence of intermolecular interactions on the sign of dTC/dp in critical solutions. Chemical Physics, 1995, 201, 575-582.	1.9	59
51	Electric permittivity and conductivity of (Na0.5Pb0.5)(Mn0.5Nb0.5)O3 ceramics. Solid State Ionics, 2005, 176, 1439-1447.	2.7	59
52	Dielectric relaxation studies and dissolution behavior of amorphous verapamil hydrochloride. Journal of Pharmaceutical Sciences, 2010, 99, 828-839.	3.3	59
53	Enhancement of Amorphous Celecoxib Stability by Mixing It with Octaacetylmaltose: The Molecular Dynamics Study. Molecular Pharmaceutics, 2012, 9, 894-904.	4.6	59
54	Volume and temperature as control parameters for the dielectric α relaxation of polymers and molecular glass formers. Philosophical Magazine, 2004, 84, 1573-1581.	1.6	58

#	Article	IF	CITATIONS
55	Effect of pressure on fragility and glass transition temperature in fragile glass-former. Journal of Chemical Physics, 1999, 110, 10978-10981.	3.0	57
56	Changes of relaxation dynamics of a hydrogen-bonded glass former after removal of the hydrogen bonds. Journal of Chemical Physics, 2006, 125, 144507.	3.0	57
57	Effect of high pressure on the relaxation dynamics of glass-forming liquids. Journal of Physics Condensed Matter, 2007, 19, 205117.	1.8	57
58	Effects of the volume and temperature on the global and segmental dynamics in poly(propylene) Tj ETQq0 0 0 rg	BT_/Overlc 2.1	ck 10 Tf 50 6
59	Emergence of the genuine Johari–Goldstein secondary relaxation in m-fluoroaniline after suppression of hydrogen-bond-induced clusters by elevating temperature and pressure. Journal of Chemical Physics, 2005, 123, 014502.	3.0	55
60	The influence of amorphization methods on the apparent solubility and dissolution rate of tadalafil. European Journal of Pharmaceutical Sciences, 2014, 62, 132-140.	4.0	55
61	Ion Dynamics under Pressure in an Ionic Liquid. Journal of Physical Chemistry B, 2008, 112, 3110-3114.	2.6	54
62	Physical Stability of the Amorphous Anticholesterol Agent (Ezetimibe): The Role of Molecular Mobility. Molecular Pharmaceutics, 2014, 11, 4280-4290.	4.6	54
63	On the isothermal pressure behaviour of the relaxation times for supercooled glass-forming liquids. Journal of Physics Condensed Matter, 1998, 10, 4131-4138.	1.8	52
64	Molecular Dynamics Studies on the Water Mixtures of Pharmaceutically Important Ionic Liquid Lidocaine HCl. Molecular Pharmaceutics, 2012, 9, 1250-1261.	4.6	52
65	Sub-Rouse Modes in Polymers Observed by Dielectric Spectroscopy. Macromolecules, 2010, 43, 3103-3106.	4.8	51
66	High-pressure and temperature dependence of dielectric relaxation in supercooled di-isobutyl phthalate. Physical Review E, 1996, 54, 4008-4010.	2.1	50
67	Structural and Secondary Relaxations in Supercooled Di-n-butyl Phthalate and Diisobutyl Phthalate at Elevated Pressure. Journal of Physical Chemistry B, 2004, 108, 4997-5003.	2.6	50
68	Characterisation of Pb(Mn1/3Nb2/3)O3 ceramics by SEM, XRD, XPS and dielectric permittivity tests. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 128, 16-24.	3.5	50
69	Enhanced Polymerization Rate and Conductivity of Ionic Liquid-Based Epoxy Resin. Macromolecules, 2017, 50, 3262-3272.	4.8	50
70	Investigation of the correlation between structural relaxation time and configurational entropy under high pressure in a chlorinated biphenyl. Journal of Chemical Physics, 2002, 117, 4901-4906.	3.0	49
71	Segmental- and normal-mode dielectric relaxation of poly(propylene glycol) under pressure. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 3047-3052.	2.1	49
72	Chemical Structure and Local Segmental Dynamics in 1,2-Polybutadiene. Macromolecules, 2003, 36, 4954-4959.	4.8	49

#	Article	IF	CITATIONS
73	Identifying the Origins of Two Secondary Relaxations in Polysaccharides. Journal of Physical Chemistry B, 2009, 113, 10088-10096.	2.6	49
74	Density scaling in viscous systems near the glass transition. Physical Review E, 2011, 83, 041505.	2.1	49
75	Molecular Dynamics, Physical Stability and Solubility Advantage from Amorphous Indapamide Drug. Molecular Pharmaceutics, 2013, 10, 3612-3627.	4.6	49
76	Heterogeneous Dynamics of Prototypical Ionic Glass CKN Monitored by Physical Aging. Physical Review Letters, 2013, 110, 015702.	7.8	49
77	Decoupling between the Interfacial and Core Molecular Dynamics of Salol in 2D Confinement. Journal of Physical Chemistry C, 2015, 119, 14366-14374.	3.1	49
78	Two secondary modes in decahydroisoquinoline: Which one is the true Johari Goldstein process?. Journal of Chemical Physics, 2005, 122, 234506.	3.0	48
79	Identification of the Molecular Motions Responsible for the Slower Secondary (\hat{I}^2) Relaxation in Sucrose. Journal of Physical Chemistry B, 2008, 112, 7662-7668.	2.6	48
80	Quantifying the Structural Dynamics of Pharmaceuticals in the Glassy State. Journal of Physical Chemistry Letters, 2012, 3, 1238-1241.	4.6	48
81	Effect of Pressure on Decoupling of Ionic Conductivity from Segmental Dynamics in Polymerized Ionic Liquids. Macromolecules, 2015, 48, 8660-8666.	4.8	48
82	Studies on the Temperature and Time Induced Variation in the Segmental and Chain Dynamics in Poly(propylene glycol) Confined at the Nanoscale. Macromolecules, 2016, 49, 6678-6686.	4.8	48
83	Volume effects on the molecular mobility close to glass transition in supercooled phenylphthalein-dimethylether. II. Journal of Chemical Physics, 2002, 117, 7624-7630.	3.0	47
84	Dielectric and mechanical relaxation of cresolphthalein–dimethylether. Journal of Chemical Physics, 2002, 117, 1188-1193.	3.0	47
85	On the glass temperature under extreme pressures. Journal of Chemical Physics, 2007, 126, 164504.	3.0	47
86	Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts. Journal of Chemical Physics, 2015, 142, 184504.	3.0	46
87	Influence of temperature and pressure on dielectric relaxation in a supercooled epoxy resin. Physical Review E, 1999, 60, 4444-4452.	2.1	45
88	Analysis of "equation of state―for supercooled liquid. Journal of Chemical Physics, 2000, 113, 4374-4378.	3.0	45
89	Effect of volume changes on segmental relaxation in siloxane polymers. Physical Review E, 2003, 68, 031802.	2.1	43
90	Effect of large hydrostatic pressure on the dielectric loss spectrum of type-Aglass formers. Physical Review E, 2004, 69, 050501.	2.1	43

#	Article	IF	CITATIONS
91	Communication: Relationships between Intermolecular potential, thermodynamics, and dynamic scaling in viscous systems. Journal of Chemical Physics, 2010, 133, 161101.	3.0	43
92	Investigations of Relaxation Dynamics and Observation of Nearly Constant Loss Phenomena in PEO 20 -LiCF 3 SO 3 -ZrO 2 Based Polymer Nano-Composite Electrolyte. Electrochimica Acta, 2016, 202, 147-156.	5.2	43
93	Stabilization of the Amorphous Ezetimibe Drug by Confining Its Dimension. Molecular Pharmaceutics, 2016, 13, 1308-1316.	4.6	43
94	Isothermal and high-pressure studies of dielectric relaxation in supercooled glycerol. Journal of Physics Condensed Matter, 1996, 8, 10885-10890.	1.8	42
95	Pressure effects on the α and α′ relaxations in polymethylphenylsiloxane. Journal of Chemical Physics, 2006, 124, 104901.	3.0	42
96	Effect of Cryogrinding on Chemical Stability of the Sparingly Water-Soluble Drug Furosemide. Pharmaceutical Research, 2011, 28, 3220-3236.	3.5	42
97	Free volume and phase transitions of 1-butyl-3-methylimidazolium based ionic liquids from positron lifetime spectroscopy. Physical Chemistry Chemical Physics, 2012, 14, 6856.	2.8	42
98	Oscillatory shear and high-pressure dielectric study of 5-methyl-3-heptanol. Colloid and Polymer Science, 2014, 292, 1913-1921.	2.1	42
99	Molecular Dynamics Changes Induced by Hydrostatic Pressure in a Supercooled Primary Alcohol. Journal of Physical Chemistry Letters, 2010, 1, 3249-3253.	4.6	41
100	Molecular Origin of Enhanced Proton Conductivity in Anhydrous Ionic Systems. Journal of the American Chemical Society, 2015, 137, 1157-1164.	13.7	41
101	Molecular Dynamics, Recrystallization Behavior, and Water Solubility of the Amorphous Anticancer Agent Bicalutamide and Its Polyvinylpyrrolidone Mixtures. Molecular Pharmaceutics, 2017, 14, 1071-1081.	4.6	41
102	Speed it up, slow it down…An issue of bicalutamide release from 3D printed tablets. European Journal of Pharmaceutical Sciences, 2020, 143, 105169.	4.0	41
103	Cohen-Grest model for the dynamics of supercooled liquids. Physical Review E, 2003, 67, 021508.	2.1	40
104	A New Method To Identify Physically Stable Concentration of Amorphous Solid Dispersions (I): Case of Flutamide + Kollidon VA64. Molecular Pharmaceutics, 2017, 14, 3370-3380.	4.6	40
105	Effect of amorphization method on telmisartan solubility and the tableting process. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 114-121.	4.3	39
106	Structure and thermal properties of salicylate-based-protic ionic liquids as new heat storage media. COSMO-RS structure characterization and modeling of heat capacities. Physical Chemistry Chemical Physics, 2014, 16, 3549.	2.8	39
107	Interplay between Core and Interfacial Mobility and Its Impact on the Measured Glass Transition: Dielectric and Calorimetric Studies. Journal of Physical Chemistry C, 2016, 120, 7373-7380.	3.1	39
108	Test of the fractional Debye-Stokes-Einstein equation in low-molecular-weight glass-forming liquids under condition of high compression. Physical Review E, 2001, 63, 062301.	2.1	38

#	Article	IF	CITATIONS
109	Do Intermolecular Interactions Control Crystallization Abilities of Glass-Forming Liquids?. Journal of Physical Chemistry B, 2011, 115, 11537-11547.	2.6	38
110	Effect of High Pressure on Crystallization Kinetics of van der Waals Liquid: An Experimental and Theoretical Study. Crystal Growth and Design, 2014, 14, 2097-2104.	3.0	38
111	Glass-Forming Tendency of Molecular Liquids and the Strength of the Intermolecular Attractions. Scientific Reports, 2016, 6, 36934.	3.3	38
112	Effect of temperature, pressure and volume on long time relaxation dynamics in fragile glass-forming liquid. Journal of Chemical Physics, 2001, 115, 10029-10035.	3.0	37
113	Test of the Einstein-Debye Relation in Supercooled Dibutylphthalate at Pressures up to 1.4ÂGPa. Physical Review Letters, 2003, 90, 175702.	7.8	37
114	Dispersion of the Structural Relaxation and the Vitrification of Liquids. Advances in Chemical Physics, 2006, , 497-593.	0.3	37
115	The Liquidâ^'Glass and Liquidâ^'Liquid Transitions of TPP at Elevated Pressure. Journal of Physical Chemistry B, 2008, 112, 10383-10385.	2.6	37
116	Mutarotation in <scp>d</scp> -Fructose Melt Monitored by Dielectric Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 4379-4383.	2.6	37
117	Observation of highly decoupled conductivity in protic ionic conductors. Physical Chemistry Chemical Physics, 2014, 16, 9123-9127.	2.8	37
118	Molecular Dynamics and Physical Stability of Amorphous Nimesulide Drug and Its Binary Drug–Polymer Systems. Molecular Pharmaceutics, 2016, 13, 1937-1946.	4.6	37
119	Dielectric relaxation behavior in antiferroelectric metal organic framework [(CH ₃) ₂ NH ₂][Fe ^{III} Fe ^{II} (HCOO) ₆] single crystals. Physical Chemistry Chemical Physics, 2016, 18, 8462-8467.	2.8	37
120	Predicting Nanoscale Dynamics of a Glass-Forming Liquid from Its Macroscopic Bulk Behavior and Vice Versa. Journal of Physical Chemistry Letters, 2017, 8, 696-702.	4.6	37
121	Co-Stabilization of Amorphous Pharmaceuticals—The Case of Nifedipine and Nimodipine. Molecular Pharmaceutics, 2018, 15, 2455-2465.	4.6	37
122	Dynamic light scattering studies of supercooled phenylphthalein–dimethylether dynamics under high pressure. Journal of Chemical Physics, 2002, 117, 2192-2198.	3.0	36
123	Decoupling of conductivity relaxation from structural relaxation in protic ionic liquids and general properties. Physical Chemistry Chemical Physics, 2013, 15, 9205.	2.8	36
124	Toward a Better Understanding of the Physical Stability of Amorphous Anti-Inflammatory Agents: The Roles of Molecular Mobility and Molecular Interaction Patterns. Molecular Pharmaceutics, 2015, 12, 3628-3638.	4.6	36
125	Planetary ball milling and supercritical fluid technology as a way to enhance dissolution of bicalutamide. International Journal of Pharmaceutics, 2017, 533, 470-479.	5.2	36
126	Consequences of an Equation of State in the Thermodynamic Scaling Regime. Journal of Physical Chemistry B, 2009, 113, 7419-7422.	2.6	35

#	Article	IF	CITATIONS
127	Toward Better Understanding Crystallization of Supercooled Liquids under Compression: Isochronal Crystallization Kinetics Approach. Crystal Growth and Design, 2013, 13, 4648-4654.	3.0	35
128	The peculiar behavior of the molecular dynamics of a glass-forming liquid confined in native porous materials – the role of negative pressure. Physical Chemistry Chemical Physics, 2016, 18, 23709-23714.	2.8	35
129	The Role of Interfacial Energy and Specific Interactions on the Behavior of Poly(propylene glycol) Derivatives under 2D Confinement. Macromolecules, 2018, 51, 4840-4852.	4.8	35
130	Density Scaling of Supercooled Simple Liquids Near the Glass Transition. Journal of Physical Chemistry B, 2010, 114, 11544-11551.	2.6	34
131	On the origin of ferroelectric structural phases in perovskite-like metal–organic formate. Journal of Materials Chemistry C, 2018, 6, 9420-9429.	5.5	34
132	On the pressure dependence of the fragility of glycerol. Journal of Physics Condensed Matter, 2009, 21, 332101.	1.8	33
133	Dielectric Relaxation Study on Tramadol Monohydrate and Its Hydrochloride Salt. Journal of Pharmaceutical Sciences, 2010, 99, 94-106.	3.3	33
134	Molecular Dynamics in Supercooled Liquid and Glassy States of Antibiotics: Azithromycin, Clarithromycin and Roxithromycin Studied by Dielectric Spectroscopy. Advantages Given by the Amorphous State. Molecular Pharmaceutics, 2012, 9, 1748-1763.	4.6	33
135	Check of the temperature- and pressure-dependent Cohen–Grest equation. Chemical Physics Letters, 2000, 320, 113-117.	2.6	32
136	Scaling behavior of the $\hat{l}\pm$ relaxation in fragile glass-forming liquids under conditions of high compression. Physical Review E, 2000, 61, 526-531.	2.1	32
137	Origin of the Commonly Observed Secondary Relaxation Process in Saccharides. Journal of Physical Chemistry B, 2010, 114, 11272-11281.	2.6	32
138	Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics. Journal of Chemical Physics, 2016, 144, 174502.	3.0	32
139	Revealing the Charge Transport Mechanism in Polymerized Ionic Liquids: Insight from High Pressure Conductivity Studies. Chemistry of Materials, 2017, 29, 8082-8092.	6.7	32
140	Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure. Journal of Chemical Physics, 2012, 136, 164507.	3.0	31
141	Effect of Compression on the Relationship between Viscosity and Dielectric Relaxation Time in Hydrogen-Bonded Primary Alcohols. Physical Review Letters, 2013, 110, 173004.	7.8	31
142	General rules prospected for the liquid fragility in various material groups and different thermodynamic conditions. Journal of Chemical Physics, 2014, 141, 134507.	3.0	31
143	Atorvastatin as a Promising Crystallization Inhibitor of Amorphous Probucol: Dielectric Studies at Ambient and Elevated Pressure. Molecular Pharmaceutics, 2017, 14, 2670-2680.	4.6	31
144	Dielectric relaxation of glass-forming epoxy resin under high pressure. Physical Review E, 1997, 56, 5764-5767.	2.1	30

#	Article	IF	CITATIONS
145	Decoupling of the dc conductivity and (α-) structural relaxation time in a fragile glass-forming liquid under high pressure. Journal of Chemical Physics, 2002, 116, 9882-9888.	3.0	30
146	The dynamics crossover region in phenol- and cresol-phthalein-dimethylethers under different conditions of pressure and temperature. Journal of Physics Condensed Matter, 2003, 15, S859-S867.	1.8	30
147	Molecular Dynamics of the Supercooled Pharmaceutical Agent Posaconazole Studied via Differential Scanning Calorimetry and Dielectric and Mechanical Spectroscopies. Molecular Pharmaceutics, 2013, 10, 3934-3945.	4.6	30
148	Isothermal Cold Crystallization Kinetics Study of Sildenafil. Crystal Growth and Design, 2014, 14, 3199-3209.	3.0	30
149	Studying the Impact of Modified Saccharides on the Molecular Dynamics and Crystallization Tendencies of Model API Nifedipine. Molecular Pharmaceutics, 2015, 12, 3007-3019.	4.6	30
150	Temperature and pressure dependences of the structural dynamics: an interpretation of Vogel–Fulcher behavior in terms of the Adam–Gibbs model. Journal of Molecular Liquids, 2004, 111, 53-60.	4.9	29
151	Universal critical-like scaling of dynamic properties in symmetry-selected glass formers. Journal of Chemical Physics, 2008, 129, 184509.	3.0	29
152	How do high pressures change the Debye process of 4-methyl-3-heptanol?. Journal of Chemical Physics, 2013, 139, 064501.	3.0	29
153	Isochronal superposition and density scaling of the intermolecular dynamics in glass-forming liquids with varying hydrogen bonding propensity. RSC Advances, 2016, 6, 49370-49375.	3.6	29
154	A new approach to description of the pressure dependence of viscosity. Journal of Non-Crystalline Solids, 2009, 355, 733-736.	3.1	28
155	High pressure study of molecular dynamics of protic ionic liquid lidocaine hydrochloride. Journal of Chemical Physics, 2012, 136, 224501.	3.0	28
156	Scaling of volumetric data in model systems based on the Lennard-Jones potential. Physical Review E, 2012, 86, 031501.	2.1	28
157	Communication: Synperiplanar to antiperiplanar conformation changes as underlying the mechanism of Debye process in supercooled ibuprofen. Journal of Chemical Physics, 2013, 139, 111103.	3.0	28
158	Following kinetics and dynamics of DGEBA-aniline polymerization inÂnanoporous native alumina oxide membranes – FTIR andÂdielectricÂstudies. Polymer, 2015, 68, 253-261.	3.8	28
159	How Different Molecular Architectures Influence the Dynamics of H-Bonded Structures in Glass-Forming Monohydroxy Alcohols. Journal of Physical Chemistry B, 2016, 120, 5744-5752.	2.6	28
160	Molecular Factors Governing the Liquid and Glassy States Recrystallization of Celecoxib in Binary Mixtures with Excipients of Different Molecular Weights. Molecular Pharmaceutics, 2017, 14, 1154-1168.	4.6	28
161	Formation of new polymorphs and control of crystallization in molecular glass-formers by electric field. Physical Chemistry Chemical Physics, 2018, 20, 925-931.	2.8	28
162	Effect of glass structure on the dynamics of the secondary relaxation in diisobutyl and diisoctyl phthalates. Physical Review B, 2005, 72, .	3.2	27

#	Article	IF	CITATIONS
163	Dielectric relaxation processes in water mixtures of tripropylene glycol. Journal of Chemical Physics, 2005, 123, 204506.	3.0	27
164	Comprehensive studies on physical and chemical stability in liquid and glassy states of telmisartan (TEL): solubility advantages given by cryomilled and quenched material. Philosophical Magazine, 2011, 91, 1926-1948.	1.6	27
165	On the scaling behavior of electric conductivity in [C ₄ mim][NTf ₂]. Physical Chemistry Chemical Physics, 2014, 16, 20444-20450.	2.8	27
166	Communication: Slow supramolecular mode in amine and thiol derivatives of 2-ethyl-1-hexanol revealed by combined dielectric and shear-mechanical studies. Journal of Chemical Physics, 2015, 143, 181102.	3.0	27
167	Theoretical Model for the Structural Relaxation Time in Coamorphous Drugs. Molecular Pharmaceutics, 2019, 16, 2992-2998.	4.6	27
168	The influence of pressure on dielectric relaxation for phthalate derivatives in the supercooled state. Journal of Physics Condensed Matter, 1997, 9, 5485-5494.	1.8	26
169	Characterization and identification of the nature of two different kinds of secondary relaxation in one glass-former. Journal of Non-Crystalline Solids, 2006, 352, 4672-4678.	3.1	26
170	Molecular Dynamics of the Cryomilled Base and Hydrochloride Ziprasidones by Means of Dielectric Spectroscopy. Journal of Pharmaceutical Sciences, 2011, 100, 2642-2657.	3.3	26
171	A New Way of Stabilization of Furosemide upon Cryogenic Grinding by Using Acylated Saccharides Matrices. The Role of Hydrogen Bonds in Decomposition Mechanism. Molecular Pharmaceutics, 2013, 10, 1824-1835.	4.6	26
172	Effect of Polymer Chain Length on the Physical Stability of Amorphous Drug–Polymer Blends at Ambient Pressure. Molecular Pharmaceutics, 2018, 15, 2807-2815.	4.6	26
173	Connecting 1D and 2D Confined Polymer Dynamics to Its Bulk Behavior via Density Scaling. ACS Macro Letters, 2019, 8, 304-309.	4.8	26
174	Dynamical processes in a superpressed glass-forming liquid studied by dielectric spectroscopy. Europhysics Letters, 1998, 44, 315-320.	2.0	25
175	Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: Dependence on chemical microstructure. Journal of Chemical Physics, 2006, 124, 164511.	3.0	25
176	High pressure dielectric studies on the structural and orientational glass. Journal of Chemical Physics, 2016, 144, 054503.	3.0	25
177	Polymerization of Monomeric Ionic Liquid Confined within Uniaxial Alumina Pores as a New Way of Obtaining Materials with Enhanced Conductivity. ACS Applied Materials & Interfaces, 2016, 8, 29779-29790.	8.0	25
178	Corroborative evidences of TVγ-scaling of the α-relaxation originating from the primitive relaxation/JG β relaxation. Journal of Non-Crystalline Solids, 2017, 478, 1-11.	3.1	25
179	Discharge of the Nanopore Confinement Effect on the Glass Transition Dynamics via Viscous Flow. Physical Review Letters, 2019, 122, 176101.	7.8	25
180	The Self-Assembly Phenomenon of Poloxamers and Its Effect on the Dissolution of a Poorly Soluble Drug from Solid Dispersions Obtained by Solvent Methods. Pharmaceutics, 2019, 11, 130.	4.5	25

#	Article	IF	CITATIONS
181	On the universal scaling of the dielectric relaxation in dense media. Journal of Physics Condensed Matter, 1997, 9, L339-L346.	1.8	24
182	The Avramov model of structural relaxation. Journal of Non-Crystalline Solids, 2003, 316, 413-417.	3.1	24
183	Study of molecular dynamics of the pharmaceutically important protic ionic liquid verapamil hydrochloride. II. Test of entropic models. Journal of Chemical Physics, 2010, 132, 094506.	3.0	24
184	Comparative Study on the Molecular Dynamics of a Series of Polypropylene Glycols. Macromolecules, 2013, 46, 1973-1980.	4.8	24
185	Kinetics and Dynamics of the Curing System. High Pressure Studies. Macromolecules, 2014, 47, 4288-4297.	4.8	24
186	Heterogeneous Nature of Relaxation Dynamics of Room-Temperature Ionic Liquids (EMIm) ₂ [Co(NCS) ₄] and (BMIm) ₂ [Co(NCS) ₄]. Journal of Physical Chemistry C, 2015, 119, 20363-20368.	3.1	24
187	A facile route to well-defined imidazolium-based poly(ionic liquid)s of enhanced conductivity via RAFT. Polymer Chemistry, 2017, 8, 5433-5443.	3.9	24
188	Confinement-Induced Changes in the Glassy Dynamics and Crystallization Behavior of Supercooled Fenofibrate. Journal of Physical Chemistry C, 2018, 122, 1384-1395.	3.1	24
189	Highly Efficient ROP Polymerization of ε-Caprolactone Catalyzed by Nanoporous Alumina Membranes. How the Confinement Affects the Progress and Product of ROP Reaction. Macromolecules, 2018, 51, 4588-4597.	4.8	24
190	The Impact of Molecular Weight on the Behavior of Poly(propylene glycol) Derivatives Confined within Alumina Templates. Macromolecules, 2019, 52, 3516-3529.	4.8	24
191	Dynamics of Pyrrolidinium-Based Ionic Liquids under Confinement. II. The Effects of Pore Size, Inner Surface, and Cationic Alkyl Chain Length. Journal of Physical Chemistry C, 2020, 124, 5395-5408.	3.1	24
192	Effect of pressure on decoupling of ionic conductivity from structural relaxation in hydrated protic ionic liquid, lidocaine HCl. Journal of Chemical Physics, 2013, 138, 204502.	3.0	23
193	Isobaric Thermal Expansion of Compressed 1,4-Dichlorobutane and 1-Bromo-4-chlorobutane: Transitiometric Results and a Novel Application of the General Density Scaling-Based Equation of State. Industrial & Engineering Chemistry Research, 2015, 54, 6400-6407.	3.7	23
194	Time and Temperature as Key Parameters Controlling Dynamics and Properties of Spatially Restricted Polymers. Macromolecules, 2017, 50, 5188-5193.	4.8	23
195	Variation in the Molecular Dynamics of DGEBA Confined within AAO Templates above and below the Glass-Transition Temperature. Journal of Physical Chemistry C, 2018, 122, 28033-28044.	3.1	23
196	Pressure behaviour of dielectric permittivity on approaching the near-critical consolute point. Europhysics Letters, 1999, 45, 334-340.	2.0	22
197	Pressureâ€induced polymerization of tetraethylene glycol dimethacrylate. Journal of Polymer Science Part A, 2008, 46, 3795-3801.	2.3	22
198	Recent advances in fundamental understanding of glass transition. Journal of Non-Crystalline Solids, 2008, 354, 5085-5088.	3.1	22

#	Article	IF	CITATIONS
199	Dynamic Crossover of Water Relaxation in Aqueous Mixtures: Effect of Pressure. Journal of Physical Chemistry Letters, 2010, 1, 1170-1175.	4.6	22
200	Glassy dynamics and physical aging in fucose saccharides as studied by infrared- and broadband dielectric spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 20641.	2.8	22
201	Can the scaling behavior of electric conductivity be used to probe the self-organizational changes in solution with respect to the ionic liquid structure? The case of [C ₈ MIM][NTf ₂]. Soft Matter, 2015, 11, 6520-6526.	2.7	22
202	Crystallization Kinetics under Confinement. Manipulation of the Crystalline Form of Salol by Varying Pore Diameter. Crystal Growth and Design, 2016, 16, 1218-1227.	3.0	22
203	Toward a better understanding of dielectric responses of van der Waals liquids: The role of chemical structures. Journal of Chemical Physics, 2017, 146, .	3.0	22
204	How can we improve the physical stability of co-amorphous system containing flutamide and bicalutamide? The case of ternary amorphous solid dispersions. European Journal of Pharmaceutical Sciences, 2019, 136, 104947.	4.0	22
205	Impact of the Interfacial Energy and Density Fluctuations on the Shift of the Glass-Transition Temperature of Liquids Confined in Pores. Journal of Physical Chemistry C, 2019, 123, 5549-5556.	3.1	22
206	Dielectric and mechanical relaxation in epoxy systems with molecules of differing topology. Journal of Physics Condensed Matter, 2000, 12, 9511-9524.	1.8	21
207	Departures from the correlation of time- and temperature-dependences of the α-relaxation in molecular glass-formers. Journal of Chemical Physics, 2003, 119, 12439-12441.	3.0	21
208	Relationship between T0, Tg and their pressure dependence for supercooled liquids. Journal of Non-Crystalline Solids, 2003, 330, 259-263.	3.1	21
209	Properties of (Bi1/9Na2/3)(Mn1/3Nb2/3)O3analysed within dielectric permittivity, conductivity, electric modulus and derivative techniques approach. Phase Transitions, 2006, 79, 447-460.	1.3	21
210	Communication: Thermodynamic scaling of the Debye process in primary alcohols. Journal of Chemical Physics, 2011, 134, 041103.	3.0	21
211	Molecular dynamics changes induced by solvent in 2-ethyl-1-hexanol. Physical Review E, 2011, 84, 031503.	2.1	21
212	Crystallization Behavior and Relaxation Dynamics of Supercooled <i>S</i> -Ketoprofen and the Racemic Mixture along an Isochrone. Crystal Growth and Design, 2015, 15, 3257-3263.	3.0	21
213	The effect of electrostatic interactions on the formation of pharmaceutical eutectics. Physical Chemistry Chemical Physics, 2018, 20, 27361-27367.	2.8	21
214	Distinguishing different classes of secondary relaxations from vapour deposited ultrastable glasses. Physical Chemistry Chemical Physics, 2018, 20, 21925-21933.	2.8	21
215	Broadband dielectric spectroscopy as an experimental alternative to calorimetric determination of the solubility of drugs into polymer matrix: Case of flutamide and various polymeric matrixes. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 231-239.	4.3	21
216	Interplay between structural static and dynamical parameters as a key factor to understand peculiar behaviour of associated liquids. Journal of Molecular Liquids, 2020, 319, 114084.	4.9	21

#	Article	IF	CITATIONS
217	Positronium annihilation lifetimes and dielectric spectroscopy studies on diethyl phthalate: Phenomenological correlations and microscopic analyses in terms of the extended free volume model by Cohen-Grest. Journal of Chemical Physics, 2006, 124, 104505.	3.0	20
218	Dielectric Studies on Molecular Dynamics of Two Important Disaccharides: Sucrose and Trehalose. Molecular Pharmaceutics, 2012, 9, 1559-1569.	4.6	20
219	Brownian dynamics determine universality of charge transport in ionic liquids. RSC Advances, 2012, 2, 5047.	3.6	20
220	Effects of cooling rate on structural relaxation in amorphous drugs: elastically collective nonlinear langevin equation theory and machine learning study. RSC Advances, 2019, 9, 40214-40221.	3.6	20
221	Multivariate Design of 3D Printed Immediate-Release Tablets with Liquid Crystal-Forming Drug—ltraconazole. Materials, 2020, 13, 4961.	2.9	20
222	Glassy and fluidlike behavior of the isotropic phase of n-cyanobiphenyls in broad-band dielectric relaxation studies. European Physical Journal E, 2002, 7, 387-392.	1.6	19
223	Effect of Temperature and Density Fluctuations on the Spatially Heterogeneous Dynamics of Glass-Forming Van der Waals Liquids under High Pressure. Physical Review Letters, 2013, 111, 125701.	7.8	19
224	Dielectric relaxation and anhydrous proton conduction in [C ₂ H ₅ NH ₃][Na _{0.5} Fe _{0.5} (HCOO) ₃] metal–organic frameworks. Dalton Transactions, 2017, 46, 3681-3687.	3.3	19
225	Crystallization of supercooled fenofibrate studied at ambient and elevated pressures. Physical Chemistry Chemical Physics, 2017, 19, 9879-9888.	2.8	19
226	High pressure water-initiated ring opening polymerization for the synthesis of well-defined α-hydroxy-ï‰-(carboxylic acid) polycaprolactones. Green Chemistry, 2017, 19, 3618-3627.	9.0	19
227	Secondary relaxation in ultrastable etoricoxib: evidence of correlation with structural relaxation. Physical Chemistry Chemical Physics, 2018, 20, 3939-3945.	2.8	19
228	Study of Increasing Pressure and Nanopore Confinement Effect on the Segmental, Chain, and Secondary Dynamics of Poly(methylphenylsiloxane). Macromolecules, 2019, 52, 3763-3774.	4.8	19
229	Impact of Imidazolium-Based Ionic Liquids on the Curing Kinetics and Physicochemical Properties of Nascent Epoxy Resins. Macromolecules, 2020, 53, 6341-6352.	4.8	19
230	Dielectric Study on the Well-Resolved Sub-Rouse and JG β-Relaxations of Poly(methylphenylsiloxane) at Ambient and Elevated Pressures. Macromolecules, 2020, 53, 1706-1715.	4.8	19
231	Effect of Temperature and Pressure on Segmental Relaxation in Polymethylphenylsiloxane. Rubber Chemistry and Technology, 2003, 76, 1106-1115.	1.2	18
232	The temperature dependence of free volume in phenyl salicylate and its relation to structural dynamics: A positron annihilation lifetime and pressure-volume-temperature study. Journal of Chemical Physics, 2009, 130, 144906.	3.0	18
233	Temperature–Volume Entropic Model for Viscosities and Structural Relaxation Times of Glass Formers. Journal of Physical Chemistry Letters, 2012, 3, 2643-2648.	4.6	18
234	Dynamics in ferro- and antiferroelectric phases of a liquid crystal with fluorinated molecules as studied by dielectric spectroscopy. Liquid Crystals, 2013, 40, 1082-1088.	2.2	18

#	Article	IF	CITATIONS
235	Impact of high pressure on the progress of polymerization of DGEBA cured with different amine hardeners: dielectric and DSC studies. RSC Advances, 2015, 5, 105934-105942.	3.6	18
236	Modifications of Structure and Intermolecular Potential of a Canonical Glassformer: Dynamics Changing with Dipole–Dipole Interaction. Journal of Physical Chemistry A, 2016, 120, 8781-8785.	2.5	18
237	Changes in Physical Stability of Supercooled Etoricoxib after Compression. Molecular Pharmaceutics, 2018, 15, 3969-3978.	4.6	18
238	Physical Stability and Viscoelastic Properties of Co-Amorphous Ezetimibe/Simvastatin System. Pharmaceuticals, 2019, 12, 40.	3.8	18
239	Effect of pressure on dynamic heterogeneity in dendrimeric alkyd resin. Journal of Chemical Physics, 2004, 120, 2020-2025.	3.0	17
240	Dielectric relaxation study of the dynamics of monosaccharides: D-ribose and 2-deoxy-D-ribose. Journal of Physics Condensed Matter, 2008, 20, 335104.	1.8	17
241	Dielectric properties of two diastereoisomers of the arabinose and their equimolar mixture. Carbohydrate Research, 2009, 344, 2547-2553.	2.3	17
242	Effect of Pressure on Tautomers' Equilibrium in Supercooled Glibenclamide Drug: Analysis of Fragility Behavior. Journal of Physical Chemistry B, 2010, 114, 14815-14820.	2.6	17
243	Effect of high hydrostatic pressure on the dielectric relaxation in a non-crystallizable monohydroxy alcohol in its supercooled liquid and glassy states. Journal of Chemical Physics, 2011, 135, 084507.	3.0	17
244	Study of dynamics and crystallization kinetics of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile at ambient and elevated pressure. Journal of Chemical Physics, 2012, 136, 234509.	3.0	17
245	Dynamic crossover and the Debye–Stokes–Einstein relation in liquid N,N-diethyl-3-methylbenzamide (DEET). Soft Matter, 2013, 9, 10373.	2.7	17
246	Synthesis, characterization and dielectric relaxation study of hyperbranched polymers with different molecular architecture. Polymer, 2016, 100, 227-237.	3.8	17
247	Dielectric Relaxation Study at Ambient and Elevated Pressure of the Modeled Lipophilic Drug Fenofibrate. Journal of Physical Chemistry B, 2016, 120, 11298-11306.	2.6	17
248	Why is surface diffusion the same in ultrastable, ordinary, aged, and ultrathin molecular glasses?. Physical Chemistry Chemical Physics, 2017, 19, 29905-29912.	2.8	17
249	Enhanced dissolution of solid dispersions containing bicalutamide subjected to mechanical stress. International Journal of Pharmaceutics, 2018, 542, 18-26.	5.2	17
250	Verifying the Approximate Coinvariance of the α and Johari–Goldstein β Relaxation Times to Variations of Pressure and Temperature in Polyisoprene. Macromolecules, 2018, 51, 4435-4443.	4.8	17
251	Studying the catalytic activity of DBU and TBD upon water-initiated ROP of Îμ-caprolactone under different thermodynamic conditions. Polymer Chemistry, 2019, 10, 6047-6061.	3.9	17
252	Clarifying the nature of the Johari-Goldstein β-relaxation and emphasising its fundamental importance. Philosophical Magazine, 2020, 100, 2596-2613.	1.6	17

#	Article	IF	CITATIONS
253	Anomalous behavior of secondary dielectric relaxation in polypropylene glycols. Journal of Physics Condensed Matter, 2007, 19, 376105.	1.8	16
254	Influence of Pressure on Quasielastic Scattering in Glasses: Relationship to the Boson Peak. Physical Review Letters, 2009, 102, 145502.	7.8	16
255	Equation of state in the generalized density scaling regime studied from ambient to ultra-high pressure conditions. Journal of Chemical Physics, 2014, 140, 044502.	3.0	16
256	Dynamic Glass Transition and Electrical Conductivity Behavior Dominated by Proton Hopping Mechanism Studied in the Family of Hyperbranched Bis-MPA Polyesters. Macromolecules, 2014, 47, 5798-5807.	4.8	16
257	Thermodynamic consequences of the kinetic nature of the glass transition. Scientific Reports, 2016, 5, 17782.	3.3	16
258	The effect of hydrogen bonding propensity and enantiomeric composition on the dynamics of supercooled ketoprofen – dielectric, rheological and NMR studies. Physical Chemistry Chemical Physics, 2016, 18, 10585-10593.	2.8	16
259	Studying the Crystallization of Various Polymorphic Forms of Nifedipine from Binary Mixtures with the Use of Different Experimental Techniques. Molecular Pharmaceutics, 2017, 14, 2116-2125.	4.6	16
260	How is charge transport different in ionic liquids? The effect of high pressure. Physical Chemistry Chemical Physics, 2017, 19, 14141-14147.	2.8	16
261	Nonlinear dielectric features of highly polar glass formers: Derivatives of propylene carbonate. Journal of Chemical Physics, 2017, 147, 224501.	3.0	16
262	Comparative study of effect of alkyl chain length on thermophysical characteristics of five N-alkylpyridinium bis(trifluoromethylsulfonyl)imides with selected imidazolium-based ionic liquids. Journal of Molecular Liquids, 2019, 278, 401-412.	4.9	16
263	Effect of Cation n-Alkyl Side-Chain Length, Temperature, and Pressure on the Glass-Transition Dynamics and Crystallization Tendency of the [CnC1Pyrr]+[Tf2N]â^' Ionic Liquid Family. Journal of Physical Chemistry C, 2019, , .	3.1	16
264	Influence of Polymeric Additive on the Physical Stability and Viscoelastic Properties of Aripiprazole. Molecular Pharmaceutics, 2019, 16, 1742-1750.	4.6	16
265	Structure-property relationships of tailored imidazolium- and pyrrolidinium-based poly(ionic liquid)s. Solid-like vs. gel-like systems. Polymer, 2020, 192, 122262.	3.8	16
266	How Does the Addition of Kollidon®VA64 Inhibit the Recrystallization and Improve Ezetimibe Dissolution from Amorphous Solid Dispersions?. Pharmaceutics, 2021, 13, 147.	4.5	16
267	Primary and secondary relaxations in bis-5-hydroxypentylphthalate revisited. Journal of Chemical Physics, 2005, 123, 204507.	3.0	15
268	Effect of thermodynamic history on secondary relaxation in the glassy state. Journal of Non-Crystalline Solids, 2007, 353, 4313-4317.	3.1	15
269	Observation of the dynamics of clusters in d-glucose with the use of dielectric spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 723-730.	2.8	15
270	Evidence of slow Debye-like relaxation in the anti-inflammatory agent etoricoxib. Physical Review E, 2015, 92, 022309.	2.1	15

#	Article	IF	CITATIONS
271	Multifaceted Strategy for the Synthesis of Diverse 2,2'-Bithiophene Derivatives. Molecules, 2015, 20, 4565-4593.	3.8	15
272	Changes in dynamics of the glass-forming pharmaceutical nifedipine in binary mixtures with octaacetylmaltose. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 185-191.	4.3	15
273	Exploring the Crystallization Tendency of Glass-Forming Liquid Indomethacin in the <i>T</i> – <i>p</i> Plane by Finding Different Iso-Invariant Points. Crystal Growth and Design, 2016, 16, 7000-7010.	3.0	15
274	Amorphous Protic Ionic Systems as Promising Active Pharmaceutical Ingredients: The Case of the Sumatriptan Succinate Drug. Molecular Pharmaceutics, 2016, 13, 1111-1122.	4.6	15
275	Experimental evidence of high pressure decoupling between charge transport and structural dynamics in a protic ionic glass-former. Scientific Reports, 2017, 7, 7084.	3.3	15
276	High pressure RAFT of sterically hindered ionic monomers. Studying relationship between rigidity of the polymer backbone and conductivity. Polymer, 2018, 140, 158-166.	3.8	15
277	Can Storage Time Improve the Physical Stability of Amorphous Pharmaceuticals with Tautomerization Ability Exposed to Compression? The Case of a Chloramphenicol Drug. Molecular Pharmaceutics, 2018, 15, 1928-1940.	4.6	15
278	Enhanced pharmacological efficacy of sumatriptan due to modification of its physicochemical properties by inclusion in selected cyclodextrins. Scientific Reports, 2018, 8, 16184.	3.3	15
279	Molecular Disorder of Bicalutamide—Amorphous Solid Dispersions Obtained by Solvent Methods. Pharmaceutics, 2018, 10, 194.	4.5	15
280	Density, viscosity, and high-pressure conductivity studies of tricyanomethanide-based ionic liquids. Journal of Molecular Liquids, 2020, 317, 113971.	4.9	15
281	Electric permittivity in the one- and two-phase region of 1-nitropropane-hexadecane near-critical solution. Chemical Physics, 1996, 213, 483-488.	1.9	14
282	Analysis of decoupling of DC conductivity and structural relaxation time in epoxies with different molecular topology. Physica A: Statistical Mechanics and Its Applications, 2004, 331, 353-364.	2.6	14
283	Effect of thermodynamic history on secondary relaxation in glassy phenolphthalein-dimethyl-ether. Physical Review B, 2006, 73, .	3.2	14
284	Pressure dependence of the dielectric loss minimum slope for ten molecular liquids. Philosophical Magazine, 2008, 88, 4101-4108.	1.6	14
285	Influence of Pressure on Chain and Segmental Dynamics in Polyisoprene. Macromolecules, 2010, 43, 5845-5850.	4.8	14
286	Nanoscale domains with nematic order in supercooled vitamin-A acetate: Molecular dynamics studies. Physical Review E, 2011, 83, 051502.	2.1	14
287	Temperature and Volume Effect on the Molecular Dynamics of Supercooled Ibuprofen at Ambient and Elevated Pressure. Molecular Pharmaceutics, 2011, 8, 1975-1979.	4.6	14
288	Temperature Dependence of the Structural Relaxation Time in Equilibrium below the Nominal <i>T</i> _g : Results from Freestanding Polymer Films. Journal of Physical Chemistry B, 2014, 118, 5608-5614.	2.6	14

#	Article	IF	CITATIONS
289	The complex, non-monotonic thermal response of the volumetric space of simple liquids. Physical Chemistry Chemical Physics, 2014, 16, 19900-19908.	2.8	14
290	Ionic liquids and their bases: Striking differences in the dynamic heterogeneity near the glass transition. Scientific Reports, 2015, 5, 16876.	3.3	14
291	Adam-Gibbs model in the density scaling regime and its implications for the configurational entropy scaling. Scientific Reports, 2015, 5, 13998.	3.3	14
292	On the molecular origin of secondary relaxations in amorphous protic ionic conductor chlorpromazine hydrochloride — High pressure dielectric studies. Journal of Non-Crystalline Solids, 2015, 407, 81-87.	3.1	14
293	Studying of crystal growth and overall crystallization of naproxen from binary mixtures. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113, 75-87.	4.3	14
294	Studying molecular dynamics of the slow, structural, and secondary relaxation processes in series of substituted ibuprofens. Journal of Chemical Physics, 2018, 148, 224505.	3.0	14
295	Glass Transition Dynamics and Physical Stability of Amorphous Griseofulvin in Binary Mixtures with Low- <i>T</i> _g Excipients. Molecular Pharmaceutics, 2019, 16, 3626-3635.	4.6	14
296	Are hydrogen supramolecular structures being suppressed upon nanoscale confinement? The case of monohydroxy alcohols. Journal of Colloid and Interface Science, 2020, 576, 217-229.	9.4	14
297	Computational Evidence for the Crucial Role of Dipole Cross-Correlations in Polar Glass-Forming Liquids. Physical Review Letters, 2022, 129, .	7.8	14
298	Pressure and temperature studies of dielectric permittivity in the homogeneous phase of nitrobenzene–dodecane binary mixture. Chemical Physics, 1999, 241, 351-357.	1.9	13
299	Free volume from positron lifetime and pressure–volume–temperature experiments in relation to structural relaxation of van der Waals molecular glass-forming liquids. Journal of Physics Condensed Matter, 2010, 22, 235104.	1.8	13
300	Determining the structural relaxation times deep in the glassy state of the pharmaceutical Telmisartan. Journal of Physics Condensed Matter, 2010, 22, 125902.	1.8	13
301	Description of mutarotational kinetics in supercooled monosugars. Journal of Non-Crystalline Solids, 2010, 356, 738-742.	3.1	13
302	Thermodynamic Scaling of Molecular Dynamics in Supercooled Ibuprofen. Journal of Physical Chemistry B, 2011, 115, 4559-4567.	2.6	13
303	Mechanism of mutarotation in supercooled liquid phase: Studies on L-sorbose. Journal of Chemical Physics, 2012, 137, 124504.	3.0	13
304	Spatially Heterogeneous Dynamics in the Density Scaling Regime: Time and Length Scales of Molecular Dynamics near the Glass Transition. Journal of Physical Chemistry Letters, 2013, 4, 4273-4278.	4.6	13
305	High pressure polymerization of glycidol. Kinetics studies. Polymer, 2014, 55, 1984-1990.	3.8	13
306	Studies on the radical polymerization of monomeric ionic liquids: nanostructure ordering as a key factor controlling the reaction and properties of nascent polymers. Polymer Chemistry, 2016, 7, 6363-6374.	3.9	13

#	Article	IF	CITATIONS
307	High pressure studies on structural and secondary relaxation dynamics in silyl derivative of D-glucose. Journal of Chemical Physics, 2017, 147, 064502.	3.0	13
308	High-pressure cell for simultaneous dielectric and neutron spectroscopy. Review of Scientific Instruments, 2018, 89, 023904.	1.3	13
309	Unusual dielectric response of 4-methyl-1,3-dioxolane derivatives. Physical Chemistry Chemical Physics, 2018, 20, 28211-28222.	2.8	13
310	Why is the change of the Johari–Coldstein β-relaxation time by densification in ultrastable glass minor?. Physical Chemistry Chemical Physics, 2018, 20, 27342-27349.	2.8	13
311	Impact of Intermolecular Interactions, Dimeric Structures on the Glass Forming Ability of Naproxen, and a Series of Its Derivatives. Molecular Pharmaceutics, 2018, 15, 4764-4776.	4.6	13
312	High-pressure dielectric studies on 1,6-anhydro-β-D-mannopyranose (plastic crystal) and 2,3,4-tri-O-acetyl-1,6-anhydro-β-D-glucopyranose (canonical glass). Journal of Chemical Physics, 2018, 148, 204510.	3.0	13
313	Universality of Density Scaling. Advances in Dielectrics, 2018, , 77-119.	1.2	13
314	Breakdown of the isochronal structural (α) and secondary (JG β) exact superpositioning in probucol - A low molecular weight pharmaceutical. Journal of Molecular Liquids, 2020, 299, 112169.	4.9	13
315	Compression-Induced Phase Transitions of Bicalutamide. Pharmaceutics, 2020, 12, 438.	4.5	13
316	Importance of Mesoporous Silica Particle Size in the Stabilization of Amorphous Pharmaceuticals—The Case of Simvastatin. Pharmaceutics, 2020, 12, 384.	4.5	13
317	Molecular relaxations in supercooled liquid and glassy states of amorphous gambogic acid: Dielectric spectroscopy, calorimetry, and theoretical approach. AIP Advances, 2020, 10, .	1.3	13
318	Temperature and pressure dependences of the relaxation dynamics of supercooled systems explored by dielectric spectroscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 1953-1963.	0.6	12
319	New experimental evidence about secondary processes in phenylphthalein-dimethylether and $1,1\hat{a}\in^2$ -bis(p-methoxyphenyl)cyclohexane. Journal of Chemical Physics, 2007, 127, 114507.	3.0	12
320	Deducting the temperature dependence of the structural relaxation time in equilibrium far below the nominal <i>T g</i> by aging the decoupled conductivity relaxation to equilibrium. Journal of Chemical Physics, 2014, 140, 174502.	3.0	12
321	Changing the Tendency of Glass-Forming Liquid To Crystallize by Moving Along Different Isolines in theT–pPhase Diagram. Crystal Growth and Design, 2016, 16, 6263-6268.	3.0	12
322	The dielectric signature of glass density. Applied Physics Letters, 2017, 111, .	3.3	12
323	Studies on the hard confinement effect on the RAFT polymerization of a monomeric ionic liquid. Unexpected triggering of RAFT polymerization at 30 ŰC. Polymer Chemistry, 2018, 9, 335-345.	3.9	12
324	Conformational changes underlying variation in the structural dynamics of materials confined at the nanometric scale. Physical Chemistry Chemical Physics, 2018, 20, 30200-30208.	2.8	12

#	Article	IF	CITATIONS
325	Experimental Evidence for a State-Point-Independent Density-Scaling Exponent in Ionic Liquids. Physical Review Letters, 2019, 123, 125702.	7.8	12
326	Studying structural and local dynamics in model H-bonded active ingredient — Curcumin in the supercooled and glassy states at various thermodynamic conditions. European Journal of Pharmaceutical Sciences, 2019, 135, 38-50.	4.0	12
327	Efficient metal-free strategies for polymerization of a sterically hindered ionic monomer through the application of hard confinement and high pressure. RSC Advances, 2019, 9, 6396-6408.	3.6	12
328	The effect of molecular architecture on the physical properties of supercooled liquids studied by MD simulations: Density scaling and its relation to the equation of state. Journal of Chemical Physics, 2019, 150, 014501.	3.0	12
329	Relationship between Nanoscale Supramolecular Structure, Effectiveness of Hydrogen Bonds, and Appearance of Debye Process. Journal of Physical Chemistry C, 2020, 124, 2672-2679.	3.1	12
330	Structurally Related Scaling Behavior in Ionic Systems. Journal of Physical Chemistry B, 2020, 124, 1240-1244.	2.6	12
331	Green Synthesis of Lidocaine Ionic Liquids and Salts: Mechanisms of Formation and Interactions in the Crystalline and Supercooled States. ACS Sustainable Chemistry and Engineering, 2020, 8, 18266-18276.	6.7	12
332	Exploring the connection between the density-scaling exponent and the intermolecular potential for liquids on the basis of computer simulations of quasireal model systems. Physical Review E, 2020, 101, 012613.	2.1	12
333	Ionic conductivity and dielectric relaxation in poly[(phenyl glycidyl ether)-co-formaldehyde]. Journal of Physics Condensed Matter, 2002, 14, 9489-9494.	1.8	11
334	Dielectric and mechanical relaxation in isooctylcyanobiphenyl (8*OCB). Journal of Physics Condensed Matter, 2010, 22, 235101.	1.8	11
335	Dielectric Studies of the Mobility in Pentitols. Journal of Physical Chemistry B, 2011, 115, 1062-1066.	2.6	11
336	Tracking of Proton Transfer Reaction in Supercooled RNA Nucleoside. Journal of Physical Chemistry Letters, 2012, 3, 2288-2292.	4.6	11
337	conductivity relaxation time in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>0.4</mml:mn><mml:mrow><m< td=""><td>ml:mi>Ca< 2.1</td><td>/mml:mi><m< td=""></m<></td></m<></mml:mrow></mml:mrow></mml:math 	ml:mi>Ca< 2.1	/mml:mi> <m< td=""></m<>
338	Physical Review E, 2014-90, 062315 Role of entropy in the thermodynamic evolution of the time scale of molecular dynamics near the glass transition. Physical Review E, 2015, 91, 062305.	2.1	11
339	Temperature- and Pressure-Induced Structural Changes of Cobalt(II) in a Phosphonium-Based Ionic Liquid. Journal of Physical Chemistry C, 2016, 120, 10156-10161.	3.1	11
340	Relaxor state and electric relaxations induced by the addition of Bi and Mn ions to Pb(Zr0.70Ti0.30)O3 ceramics. Ceramics International, 2017, 43, 11699-11709.	4.8	11
341	How does the high pressure affects the solubility of the drug within the polymer matrix in solid dispersion systems. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 143, 8-17.	4.3	11
342	The application of spatially restricted geometries as a unique route to produce well-defined poly(vinyl pyrrolidones) <i>via</i> free radical polymerisation. Chemical Communications, 2019, 55, 6441-6444.	4.1	11

#	Article	IF	CITATIONS
343	Explanation of the difference in temperature and pressure dependences of the Debye relaxation and the structural α-relaxation near T of monohydroxy alcohols. Chemical Physics, 2020, 530, 110617.	1.9	11
344	The role of the dipole moment orientations in the crystallization tendency of the van der Waals liquids – molecular dynamics simulations. Scientific Reports, 2020, 10, 283.	3.3	11
345	Current research trends in dielectric relaxation studies of amorphous pharmaceuticals: Physical stability, tautomerism, and the role of hydrogen bonding. TrAC - Trends in Analytical Chemistry, 2021, 134, 116097.	11.4	11
346	Pressure-induced liquid-liquid transition in a family of ionic materials. Nature Communications, 2022, 13, 1342.	12.8	11
347	Anomalous Narrowing of the Structural Relaxation Dispersion of Tris(dimethylsiloxy)phenylsilane at Elevated Pressures. Journal of Physical Chemistry B, 2006, 110, 7678-7681.	2.6	10
348	Secondary dielectric relaxation in decahydroisoquinoline–cyclohexane mixture. Journal of Non-Crystalline Solids, 2006, 352, 4685-4689.	3.1	10
349	Fragility versus activation volume: Insight into molecular dynamics of glass-forming hydrogen-bonded liquids. Physical Review E, 2011, 84, 052501.	2.1	10
350	Does the Johari–Goldstein β-Relaxation Exist in Polypropylene Glycols?. Macromolecules, 2015, 48, 4151-4157.	4.8	10
351	Is There a Liquid–Liquid Phase Transition in Confined Triphenyl Phosphite?. Journal of Physical Chemistry C, 2017, 121, 19442-19450.	3.1	10
352	Breakdown of the Simple Arrhenius Law in the Normal Liquid State. Journal of Physical Chemistry Letters, 2018, 9, 1783-1787.	4.6	10
353	Peculiar relaxation dynamics of propylene carbonate derivatives. Journal of Chemical Physics, 2019, 150, 044504.	3.0	10
354	Studies on the internal medium-range ordering and high pressure dynamics in modified ibuprofens. Physical Chemistry Chemical Physics, 2020, 22, 295-305.	2.8	10
355	Theoretical and Experimental Study of Compression Effects on Structural Relaxation of Glass-Forming Liquids. ACS Omega, 2020, 5, 11035-11042.	3.5	10
356	Correlation between Locally Ordered (Hydrogen-Bonded) Nanodomains and Puzzling Dynamics of Polymethysiloxane Derivative. Macromolecules, 2020, 53, 10225-10233.	4.8	10
357	Fast secondary dynamics for enhanced charge transport in polymerized ionic liquids. Physical Review E, 2020, 101, 032606.	2.1	10
358	How to Obtain the Maximum Properties Flexibility of 3D Printed Ketoprofen Tablets Using Only One Drug-Loaded Filament?. Molecules, 2021, 26, 3106.	3.8	10
359	Virial–potential-energy correlation and its relation to density scaling for quasireal model systems. Physical Review E, 2020, 102, 062140.	2.1	10
360	Comparative analysis of dielectric, shear mechanical and light scattering response functions in polar supercooled liquids. Scientific Reports, 2021, 11, 22142.	3.3	10

#	Article	IF	CITATIONS
361	Role of defects in the nonmonotonic behavior of secondary relaxation of polypropylene glycols. Journal of Chemical Physics, 2008, 128, 134904.	3.0	9
362	Dynamics of α-Tetralone at Elevated Pressure and in Mixture with Oligostyrene. Journal of Physical Chemistry B, 2012, 116, 22-29.	2.6	9
363	A mutarotation mechanism based on dual proton exchange in the amorphous d-glucose. Physical Chemistry Chemical Physics, 2014, 16, 4694.	2.8	9
364	Observation of the nearly constant loss in super rigid saccharides: in search of a hidden crossover in dynamics deep in the glassy state. Physical Chemistry Chemical Physics, 2016, 18, 8901-8910.	2.8	9
365	Comparison of high pressure and nanoscale confinement effects on crystallization of the molecular glass-forming liquid, dimethyl phthalate. Physical Chemistry Chemical Physics, 2017, 19, 14366-14375.	2.8	9
366	Activation volume of selected liquid crystals in the density scaling regime. Scientific Reports, 2017, 7, 42174.	3.3	9
367	Interplay between the static ordering and dynamical heterogeneities determining the dynamics of rotation and ordinary liquid phases in 1,6-anhydro-β-D-glucose. Scientific Reports, 2017, 7, 42103.	3.3	9
368	Anhydrosaccharides—A new class of the fragile plastic crystals. Journal of Chemical Physics, 2018, 148, 074501.	3.0	9
369	Evidence of a Fundamental Mechanism Governing Conductivity Relaxation in Room-Temperature Ionic Liquid. Journal of Physical Chemistry C, 2019, 123, 22089-22094.	3.1	9
370	Density Scaling in Ionic Glass Formers Controlled by Grotthuss Conduction. Journal of Physical Chemistry B, 2019, 123, 1156-1160.	2.6	9
371	Impact of Confinement on the Dynamics and H-Bonding Pattern in Low-Molecular Weight Poly(propylene glycols). Journal of Physical Chemistry C, 2020, 124, 17607-17621.	3.1	9
372	The relation between molecular dynamics and configurational entropy in room temperature ionic liquids: Test of Adam–Gibbs model. Journal of Chemical Physics, 2020, 152, 091101.	3.0	9
373	Molecular Dynamics and Physical Stability of Ibuprofen in Binary Mixtures with an Acetylated Derivative of Maltose. Molecular Pharmaceutics, 2020, 17, 3087-3105.	4.6	9
374	New paradigm of dielectric relaxation of sizable and rigid molecular glass formers. Physical Review E, 2020, 101, 010603.	2.1	9
375	Data-Driven Modeling of the Bicalutamide Dissolution from Powder Systems. AAPS PharmSciTech, 2020, 21, 111.	3.3	9
376	Synthetic strategy matters: The study of a different kind of PVP as micellar vehicles of metronidazole. Journal of Molecular Liquids, 2021, 332, 115789.	4.9	9
377	Fractional Walden rule for aprotic ionic liquids: Experimental verification over a wide range of temperatures and pressures. Journal of Molecular Liquids, 2021, 331, 115772.	4.9	9
378	The Impact of the Length of Alkyl Chain on the Behavior of Benzyl Alcohol Homologous. The Interplay Between Dispersive and Hydrogen Bond Interactions. Physical Chemistry Chemical Physics, 2021, 23, 23796-23807.	2.8	9

#	Article	IF	CITATIONS
379	Dielectric Spectroscopy Studies of 4-Cyano-3-fluorophenyl 4-Butylbenzoate Liquid Crystal at High Pressure. Acta Physica Polonica A, 2012, 122, 378-381.	0.5	9
380	Complex Reorientation Dynamics of Sizable Glass-Formers with Polar Rotors Revealed by Dielectric Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 11303-11307.	4.6	9
381	Molecular dynamics in supercooled di-isobutyl phthalate close to the glass transition. Journal of Physics Condensed Matter, 2000, 12, 9551-9562.	1.8	8
382	Dielectric studies of molecular motions in glassy and liquid nicotine. Journal of Physics Condensed Matter, 2006, 18, 5607-5615.	1.8	8
383	Critical behaviour in nitrobenzene–hexane mixture by approaching the liquid–liquid critical line. Fluid Phase Equilibria, 2007, 255, 11-16.	2.5	8
384	Elucidating the existence of the excess wing in an ionic liquid on applying pressure. Journal of Physics Condensed Matter, 2008, 20, 244107.	1.8	8
385	Subnanometre size free volumes in amorphous Verapamil hydrochloride: A positron lifetime and PVT study through Tg in comparison with dielectric relaxation spectroscopy. European Journal of Pharmaceutical Sciences, 2010, 41, 388-398.	4.0	8
386	Rheological Study of Mutarotation of Fructose in Anhydrous State. Journal of Physical Chemistry B, 2013, 117, 1475-1479.	2.6	8
387	Effect of polymer structure on the molecular dynamics and thermal behavior of poly(allyl) Tj ETQq1 1 0.78	4314 rgBT (Overla	ock 10 Tf 50
388	Communication: Inflection in the pressure dependent conductivity of the protic ionic liquid C8HIM NTf2. Journal of Chemical Physics, 2017, 146, .	3.0	8
389	Cooling-Rate versus Compression-Rate Dependence of the Crystallization in the Glass-Forming Liquid, Propylene Carbonate. Crystal Growth and Design, 2018, 18, 2538-2544.	3.0	8
390	High-Pressure Studies on the Chain and Segmental Dynamics of a Series of Poly(propylene glycol) Derivatives. Macromolecules, 2019, 52, 5658-5669.	4.8	8
391	Access to Thermodynamic and Viscoelastic Properties of Poly(ionic liquid)s Using High-Pressure Conductivity Measurements. ACS Macro Letters, 2019, 8, 996-1001.	4.8	8
392	Molecular dynamics, viscoelastic properties and physical stability studies of a new amorphous dihydropyridine derivative with T-type calcium channel blocking activity. European Journal of Pharmaceutical Sciences, 2020, 141, 105083.	4.0	8
393	Unique Behavior of Poly(propylene glycols) Confined within Alumina Templates Having a Nanostructured Interface. Nano Letters, 2020, 20, 5714-5719.	9.1	8
394	The impact of various azole antifungals on the liquid crystalline ordering in itraconazole. Journal of Molecular Liquids, 2020, 307, 112959.	4.9	8
395	Ion and Proton Transport In Aqueous/Nonaqueous Acidic Ionic Liquids for Fuel-Cell Applications—Insight from High-Pressure Dielectric Studies. ACS Applied Materials & Interfaces, 2021, 13, 30614-30624.	8.0	8
396	Enhancement of the Physical Stability of Amorphous Sildenafil in a Binary Mixture, with either a Plasticizing or Antiplasticizing Compound. Pharmaceutics, 2020, 12, 460.	4.5	8

#	Article	IF	CITATIONS
397	Two-Step Aging of Highly Polar Glass. Journal of Physical Chemistry Letters, 2021, 12, 11779-11783.	4.6	8
398	Microscopic origin of secondary modes observed in decahydroisoquinoline. Journal of Molecular Structure, 2010, 975, 200-204.	3.6	7
399	Positronium lifetime in supercooled 1-butanol: Search for polyamorphism. Chemical Physics Letters, 2010, 491, 160-163.	2.6	7
400	Dynamics of the slow mode in the family of six-carbon monosaccharides monitored by dielectric spectroscopy. Journal of Physics Condensed Matter, 2010, 22, 365103.	1.8	7
401	New insight into relaxation dynamics of an epoxy/hydroxy functionalized polybutadiene from dielectric and mechanical spectroscopy studies. Colloid and Polymer Science, 2014, 292, 1853-1862.	2.1	7
402	Thermodynamic scaling of molecular dynamics in supercooled liquid state of pharmaceuticals: Itraconazole and ketoconazole. Journal of Chemical Physics, 2015, 142, 224507.	3.0	7
403	In search of correlations between the four-point measure of dynamic heterogeneity and other characteristics of glass-forming liquids under high pressure. Journal of Non-Crystalline Solids, 2015, 407, 196-205.	3.1	7
404	The indications of tautomeric conversion in amorphous bicalutamide drug. European Journal of Pharmaceutical Sciences, 2017, 110, 117-123.	4.0	7
405	Emergence of a substrate-temperature-dependent dielectric process in a prototypical vapor deposited hole-transport glass. Scientific Reports, 2018, 8, 1380.	3.3	7
406	Glassy dynamics predicted by mutual role of free and activation volumes. Soft Matter, 2019, 15, 4656-4661.	2.7	7
407	The influence of the nanocurvature on the surface interactions and molecular dynamics of model liquid confined in cylindrical pores. Journal of Molecular Liquids, 2020, 298, 111973.	4.9	7
408	Relaxing under pressure with a rigid niccolite formate framework. Journal of Materials Chemistry C, 2020, 8, 16736-16741.	5.5	7
409	Toward the Undiscovered Dielectric Properties of Hybrid Acetamidinium Manganese Formate under High Pressure. Journal of Physical Chemistry C, 2021, 125, 908-914.	3.1	7
410	High pressure aging studies on the low-molecular weight glass-forming pharmaceutical – Probucol. Journal of Molecular Liquids, 2021, 321, 114626.	4.9	7
411	On the temperature and pressure dependence of dielectric relaxation processes in ionic liquids. Physical Chemistry Chemical Physics, 2021, 23, 14260-14275.	2.8	7
412	Anormal Thermal History Effect on the Structural Dynamics of Probucol Infiltrated into Porous Alumina. Journal of Physical Chemistry C, 2021, 125, 3901-3912.	3.1	7
413	Stable and reversible pressure-controlled dielectric switching in dicyanide hybrid perovskite. Applied Materials Today, 2021, 22, 100957.	4.3	7
414	Ternary Eutectic Ezetimibe–Simvastatin–Fenofibrate System and the Physical Stability of Its Amorphous Form. Molecular Pharmaceutics, 2021, 18, 3588-3600.	4.6	7

#	Article	IF	CITATIONS
415	Influence of temperature and pressure on the dynamics of glass formers explored by dielectric spectroscopy. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8, 395-400.	2.9	6
416	Correlation between the a relaxation and the excess wing for polychlorinated biphenyls and glycerol. Magyar Apróvad Közlemények, 2002, 69, 947-952.	1.4	6
417	Additive property of secondary relaxation processes in di-n-octyl and di-isooctyl phthalates: Signature of non-Johari-Goldstein relaxation. Journal of Chemical Physics, 2007, 126, 174501.	3.0	6
418	The behavior and origin of the excess wing in DEET (N,N-diethyl-3-methylbenzamide). Physical Chemistry Chemical Physics, 2013, 15, 9300.	2.8	6
419	Dynamic Properties of Glass-Formers Governed by the Frequency Dispersion of the Structural α-Relaxation: Examples from Prilocaine. Journal of Physical Chemistry B, 2015, 119, 12699-12707.	2.6	6
420	New limits of secondary Î ² -relaxation. Scientific Reports, 2017, 7, 43091.	3.3	6
421	Isobaric Cooling or Isothermal Compression? Unveiling the Effect of Path Dependence on Crystallization. Crystal Growth and Design, 2017, 17, 2950-2954.	3.0	6
422	The Impact of Liquid Crystalline Phase Ordering on the Thermodynamic Scaling of Itraconazole. Journal of Physical Chemistry C, 2019, 123, 4558-4566.	3.1	6
423	Effect of electrostatic interactions on the relaxation dynamics of pharmaceutical eutectics. European Journal of Pharmaceutical Sciences, 2019, 134, 93-101.	4.0	6
424	How to align a nematic glassy phase – Different conditions – Different results. Journal of Molecular Liquids, 2019, 280, 314-318.	4.9	6
425	Studies on the molecular dynamics of acetylated oligosaccharides of different topologies (linear) Tj ETQq1 1 0.7	′84314 rgE 10.2	BT /Overlock 1
426	Does the molecular mobility and flexibility of the saccharide ring affect the glass-forming ability of naproxen in binary mixtures?. European Journal of Pharmaceutical Sciences, 2020, 141, 105091.	4.0	6
427	Influence of High Pressure on the Local Order and Dynamical Properties of the Selected Azole Antifungals. Journal of Physical Chemistry B, 2020, 124, 11949-11961.	2.6	6
428	The structural α-relaxation times of prilocaine confined in 1 nm pores of molecular sieves: quantitative explanation by the coupling model. Physical Chemistry Chemical Physics, 2020, 22, 9257-9261.	2.8	6
429	Pressureâ€assisted strategy for the synthesis of vinyl pyrrolidoneâ€based macroâ€star photoiniferters. A route to star block copolymers. Journal of Polymer Science, 2020, 58, 1393-1399.	3.8	6
430	Local structure and molecular dynamics of highly polar propylene carbonate derivative infiltrated within alumina and silica porous templates. Journal of Chemical Physics, 2021, 154, 064701.	3.0	6
431	Anomalous narrowing of the shape of the structural process in derivatives of trehalose at high pressure. The role of the internal structure. Journal of Molecular Liquids, 2021, 336, 116321.	4.9	6
432	Hard confinement systems as effective <i>nanoreactors</i> for <i>in situ</i> photo-RAFT: towards control over molecular weight distribution and morphology. Polymer Chemistry, 2021, 12, 1105-1113.	3.9	6

#	Article	IF	CITATIONS
433	Aromaticity effect on supramolecular aggregation. Aromatic vs. cyclic monohydroxy alcohols. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 276, 121235.	3.9	6
434	Test of the dynamic lattice liquid model of glass-forming liquids. Journal of Molecular Liquids, 2004, 109, 137-141.	4.9	5
435	Pressure-induced polymerization of phenoxyethyl acrylate. Journal of Physics Condensed Matter, 2008, 20, 244121.	1.8	5
436	Theoretical and experimental studies on the internal mobility of two sulfonylurea agents: glibenclamide and glimepiride. Journal of Physics Condensed Matter, 2011, 23, 425901.	1.8	5
437	High-pressure crystallization of 1-methyl-3-trimethylsilylmethylimidazolium tetrafluoroborate ionic liquid. Chemical Physics Letters, 2012, 546, 150-152.	2.6	5
438	Dielectric relaxation in weakly ergodic dilute dipole systems. Journal of Chemical Physics, 2013, 138, 204501.	3.0	5
439	Experimental (FTIR, BDS) and theoretical analysis of mutarotation kinetics of <scp>d</scp> -fructose mixed with different alcohols in the supercooled region. RSC Advances, 2016, 6, 57634-57646.	3.6	5
440	Inflection point in the Debye relaxation time of 2-butyl-1-octanol. Journal of Chemical Physics, 2018, 149, 214502.	3.0	5
441	Studying tautomerism in an important pharmaceutical glibenclamide confined in the thin nanometric layers. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110319.	5.0	5
442	Direct insight into the kinetics of the high-pressure step-growth polymerization of DGEBA/aniline model system. Polymer, 2019, 172, 322-329.	3.8	5
443	Universal scaling behavior of entropy and conductivity in ionic liquids. Journal of Molecular Liquids, 2020, 316, 113824.	4.9	5
444	Coupling between structural relaxation and diffusion in glass-forming liquids under pressure variation. Physical Chemistry Chemical Physics, 2020, 22, 24365-24371.	2.8	5
445	Influence of the Internal Structure and Intermolecular Interactions on the Correlation between Structural ($\hat{I}\pm$) and Secondary (\hat{I}^2 -JG) Relaxation below the Glass Transition Temperature in Neat Probucol and Its Binary Mixtures with Modified Saccharides. Journal of Physical Chemistry B, 2020, 124, 4821-4834.	2.6	5
446	Density Scaling Based Detection of Thermodynamic Regions of Complex Intermolecular Interactions Characterizing Supramolecular Structures. Scientific Reports, 2020, 10, 9316.	3.3	5
447	Rheo-dielectric studies of the kinetics of shear-induced nematic alignment changes in itraconazole. Journal of Molecular Liquids, 2020, 302, 112494.	4.9	5
448	High-pressure experiments as a novel perspective to study the molecular dynamics of glass-forming materials confined at the nanoscale. Nanoscale, 2020, 12, 10600-10608.	5.6	5
449	Studies on ion dynamics of polymerized ionic liquids through the free volume theory. Polymer, 2021, 212, 123286.	3.8	5
450	Correlation between configurational entropy, excess entropy, and ion dynamics in imidazolium-based ionic liquids: Test of the Adam–Gibbs model. Journal of Chemical Physics, 2021, 154, 044502.	3.0	5

#	Article	IF	CITATIONS
451	ls a Dissociation Process Underlying the Molecular Origin of the Debye Process in Monohydroxy Alcohols?. Journal of Physical Chemistry B, 2021, 125, 2960-2967.	2.6	5
452	Systematic studies on the dynamics, intermolecular interactions and local structure in the alkyl and phenyl substituted butanol isomers. Journal of Molecular Liquids, 2022, 346, 117098.	4.9	5
453	The dielectric response of phenothiazine-based glass-formers with different molecular complexity. Scientific Reports, 2021, 11, 15816.	3.3	5
454	Light-mediated controlled and classical polymerizations of less-activated monomers under high-pressure conditions. Polymer Chemistry, 2021, 12, 4418-4427.	3.9	5
455	Anomalous behavior of the structural relaxation dispersion function of a carborane-containing siloxane. Journal of Physics Condensed Matter, 2010, 22, 415101.	1.8	4
456	Effects of dynamic heterogeneity and density scaling of molecular dynamics on the relationship among thermodynamic coefficients at the glass transition. Journal of Chemical Physics, 2015, 143, 024502.	3.0	4
457	New Insight Into Ion Transport Through Dynamic Modulus Studies. Journal of Physical Chemistry C, 2016, 120, 22816-22821.	3.1	4
458	In search of invariants for viscous liquids in the density scaling regime: investigations of dynamic and thermodynamic moduli. Physical Chemistry Chemical Physics, 2017, 19, 18348-18355.	2.8	4
459	Influence of pressure on the crystallization of systems characterized by different intermolecular attraction. Physical Review B, 2017, 96, .	3.2	4
460	The impact of chemical structure on the formation of the medium-range order and dynamical properties of selected antifungal APIs. Physical Chemistry Chemical Physics, 2020, 22, 28202-28212.	2.8	4
461	Tabletting solid dispersions of bicalutamide prepared using ball-milling or supercritical carbon dioxide: the interrelationship between phase transition and <i>in-vitro</i> dissolution. Pharmaceutical Development and Technology, 2020, 25, 1109-1117.	2.4	4
462	Thorough studies of tricyanomethanide-based ionic liquids – the influence of alkyl chain length of the cation. Soft Matter, 2020, 16, 9479-9487.	2.7	4
463	Pressure-assisted solvent- and catalyst-free production of well-defined poly(1-vinyl-2-pyrrolidone) for biomedical applications. RSC Advances, 2020, 10, 21593-21601.	3.6	4
464	Revealing Fast Proton Transport in Condensed Matter by Means of Density Scaling Concept. Journal of Physical Chemistry C, 2020, 124, 15749-15756.	3.1	4
465	High-Pressure Dielectric Studies—a Way to Experimentally Determine the Solubility of a Drug in the Polymer Matrix at Low Temperatures. Molecular Pharmaceutics, 2021, 18, 3050-3062.	4.6	4
466	The effect of high-pressure on organocatalyzed ROP of \hat{I}^3 -butyrolactone. Polymer, 2021, 233, 124166.	3.8	4
467	New Strategy for the Synthesis of 3,4,5-trisubstituted Isoxazolines from Allyl Compounds. Current Organic Chemistry, 2014, 18, 2280-2296.	1.6	4
468	Sugar decorated star-shaped (co)polymers with resveratrol-based core – physicochemical and biological properties. Journal of Materials Science, 2022, 57, 2257-2276.	3.7	4

#	Article	IF	CITATIONS
469	Synthesis and Relaxation Properties of bis(5-Hydroxypenthyl)Phthalate - the Model Oligoester to Study the Relaxation Properties of Polyesters. Macromolecular Symposia, 2007, 247, 405-410.	0.7	3
470	Comment on "Study of dielectric relaxations of anhydrous trehalose and maltose glasses―[J. Chem. Phys. 134, 014508 (2011)]. Journal of Chemical Physics, 2011, 135, 167102.	3.0	3
471	Dielectric properties of glassy disaccharides for electromagnetic interference shielding application. Journal of Applied Physics, 2015, 118, .	2.5	3
472	A study on the progress of mutarotation above and below the Tg and the relationship between constant rates and structural relaxation times. Physical Chemistry Chemical Physics, 2017, 19, 20949-20958.	2.8	3
473	How does the type of counterion influence the polymerization rate and thermal properties of tailored cholineâ€based linear―and starâ€shaped poly(ionic liquid)s PILs?. Journal of Polymer Science Part A, 2018, 56, 2681-2691.	2.3	3
474	Studies on dynamics and isomerism in supercooled photochromic compound Aberchrome 670 with the use of different experimental techniques. Physical Chemistry Chemical Physics, 2018, 20, 18009-18019.	2.8	3
475	Relations of pressure and temperature dependences of the Johari-Goldstein \hat{l}^2 -relaxation to the $\hat{l}\pm$ -relaxation: Amorphous polymers. AlP Conference Proceedings, 2018, , .	0.4	3
476	Studying the Crystal Growth of Selected Active Pharmaceutical Ingredients from Single- and Two-Component Systems above and below the Glass Transition Temperature. Crystal Growth and Design, 2019, 19, 1031-1040.	3.0	3
477	Magnitude of Dynamically Correlated Molecules as an Indicator for a Dynamical Crossover in Ionic Liquids. Journal of Physical Chemistry B, 2021, 125, 4141-4147.	2.6	3
478	Broadband-dielectric-spectroscopy study of molecular dynamics in a mixture of itraconazole and glycerol in glassy, smectic- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>A</mml:mi></mml:mrow><td>nath></td><td>3</td></mml:math>	nath>	3
479	Inhibition of celecoxib crystallization by mesoporous silica – Molecular dynamics studies leading to the discovery of the stabilization origin. European Journal of Pharmaceutical Sciences, 2022, 171, 106132.	4.0	3
480	Submerged Eutectic-Assisted, Solvent-Free Mechanochemical Formation of a Propranolol Salt and Its Other Multicomponent Solids. Pharmaceutics, 2021, 13, 2125.	4.5	3
481	Density Scaling of Translational and Rotational Molecular Dynamics in a Simple Ellipsoidal Model near the Glass Transition. International Journal of Molecular Sciences, 2022, 23, 4546.	4.1	3
482	Supramolecular structures of self-assembled oligomers under confinement. Soft Matter, 2022, 18, 4930-4936.	2.7	3
483	The role of the diffusion in the predictions of the classical nucleation theory for quasi-real systems differ in dipole moment value. Scientific Reports, 2022, 12, .	3.3	3
484	Studies on the Molecular Dynamics at High Pressures as a Key to Identify the Sub-Rouse Mode in PMMS. Macromolecules, 2022, 55, 5581-5590.	4.8	3
485	The quasi-critical behaviour of electric conductivity in glass-forming liquids. Journal of Physics Condensed Matter, 1999, 11, L451-L456.	1.8	2
486	RC -model of stretched relaxation. European Journal of Physics, 2000, 21, 233-237.	0.6	2

#	Article	IF	CITATIONS
487	Linear and Non-linear Dielectric Pretransitional Behavior Near the Isotropic-nematic Phase Transition for 4-cyano-4-n-pentylbiphenyl (5CB). Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2002, 57, 244-246.	1.5	2
488	Simple RC network models for simulating dielectric response with two relaxation loss peaks. Journal of Non-Crystalline Solids, 2007, 353, 3932-3935.	3.1	2
489	The extended Debye model analysis of Poley absorption in glass-forming toluene. Journal of Non-Crystalline Solids, 2008, 354, 1044-1047.	3.1	2
490	Mutarotation in biologically important pure L-fucose and its enantiomer. Journal of Physics Condensed Matter, 2013, 25, 375101.	1.8	2
491	The implications of various molecular interactions on the dielectric behavior of cimetidine and cimetidine hydrochloride. RSC Advances, 2016, 6, 112919-112930.	3.6	2
492	Varying thermodynamic conditions as a new way to tune the molecular order in glassy itraconazole. Journal of Molecular Liquids, 2019, 286, 110920.	4.9	2
493	How Does the CO2 in Supercritical State Affect the Properties of Drug-Polymer Systems, Dissolution Performance and Characteristics of Tablets Containing Bicalutamide?. Materials, 2020, 13, 2848.	2.9	2
494	Isochronal Conditions—The Key To Maintain the Given Solubility Limit, of a Small Molecule within the Polymer Matrix, at Elevated Pressure. Molecular Pharmaceutics, 2020, 17, 3730-3739.	4.6	2
495	How does pressure affect the molecular dynamics, intramolecular interactions, and the relationship between structural (α) and secondary (JG-β) relaxation above and below the glass transition temperature in binary mixtures of H-bonded API – probucol and acetylated saccharides?. European lournal of Pharmaceutical Sciences, 2021, 164, 105894.	4.0	2
496	Pressure Dependence of the Crystallization Rate for the S-Enantiomer and a Racemic Mixture of Ibuprofen. Crystal Growth and Design, 2021, 21, 7075-7086.	3.0	2
497	Impact of the Chain Length and Topology of the Acetylated Oligosaccharide on the Crystallization Tendency of Naproxen from Amorphous Binary Mixtures. Molecular Pharmaceutics, 2021, 18, 347-358.	4.6	2
498	Studies on the Vitrified and Cryomilled Bosentan. Molecular Pharmaceutics, 2022, 19, 80-90.	4.6	2
499	High pressure as a novel tool for the cationic ROP of Î ³ -butyrolactone. RSC Advances, 2021, 11, 34806-34819.	3.6	2
500	Variation in the local ordering, H-bonding pattern and molecular dynamics in the pressure densified ritonavir. Journal of Molecular Liquids, 2022, 351, 118666.	4.9	2
501	Insight from high-pressure dielectric studies into molecular dynamics of the itraconazole-glycerol mixture in smectic and isotropic phases . Journal of Chemical Physics, 2022, 156, 154501.	3.0	2
502	Ion dynamics in pendant and backbone polymerized ionic liquids: A view from high-pressure dielectric experiments and free-volume model. Physical Review E, 2022, 105, .	2.1	2
503	Universal Scaling of Alpha Relaxation in Complex Liquids. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2001, 56, 893-894.	1.5	1
504	The Model Oligoester Bis-(2-Hydroxypropyl)phthalate - Synthesis and Relaxation Properties. Macromolecular Symposia, 2006, 245-246, 175-180.	0.7	1

#	Article	IF	CITATIONS
505	Evidence of pressure induced intermolecular proton transfer via mutarotation: the case of supercooled d-fructose. Physical Chemistry Chemical Physics, 2015, 17, 19394-19400.	2.8	1
506	Dramatic slowing down of the conformational equilibrium in the silyl derivative of glucose in the vicinity of the glass transition temperature. Soft Matter, 2019, 15, 7429-7437.	2.7	1
507	Nature of intramolecular dynamics in protic ionic glass-former: insight from ambient and high pressure Brillouin spectroscopy. Journal of Molecular Liquids, 2019, 282, 51-56.	4.9	1
508	The behavior of conductivity dynamic modulus and its connection to thermodynamic bulk modulus in ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 19342-19348.	2.8	1
509	Influence of Annealing in the Close Vicinity of <i>T</i> _g on the Reorganization within Dimers and Its Impact on the Crystallization Kinetics of Gemfibrozil. Molecular Pharmaceutics, 2020, 17, 990-1000.	4.6	1
510	Effect of structure on molecular dynamics in glass-forming liquids. The case of aromaticity. Journal of Molecular Liquids, 2021, 344, 117757.	4.9	1
511	Peculiar Behavior of the Secondary Dielectric Relaxation in Propylene Glycol Oligomers near the Glass Transition. AIP Conference Proceedings, 2008, , .	0.4	Ο
512	Relaxation of Electric Conduction in Pb(Mn1/3Nb2/3)O3Ceramics: Subsystem of Defects Behavior Under Pressure. Ferroelectrics, 2009, 378, 181-185.	0.6	0
513	Multivariate pressure effects on an electron hopping process in ferroelectric KTa1â^'xNbxO3. European Physical Journal B, 2014, 87, 1.	1.5	Ο
514	High pressure dielectric study of N-ethylacetamide. Applied Physics Letters, 2020, 116, 163701.	3.3	0
515	From ambient- to high-pressure dielectric response of perovskite formamidinium manganese formate. Journal of Materials Chemistry C, 2021, 9, 5740-5748.	5.5	Ο
516	How Does Long-Term Storage Influence the Physical Stability and Dissolution of Bicalutamide from Solid Dispersions and Minitablets?. Processes, 2022, 10, 1002.	2.8	0