
Graham Bell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5879768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Yeasts from temperate forests. Yeast, 2022, 39, 4-24.	0.8	18
2	Resistance, resilience, and functional redundancy of freshwater bacterioplankton communities facing a gradient of agricultural stressors in a mesocosm experiment. Molecular Ecology, 2021, 30, 4771-4788.	2.0	12
3	Widespread agrochemicals differentially affect zooplankton biomass and community structure. Ecological Applications, 2021, 31, e02423.	1.8	12
4	Community rescue in experimental phytoplankton communities facing severe herbicide pollution. Nature Ecology and Evolution, 2020, 4, 578-588.	3.4	45
5	Patterns of population structure and complex haplotype sharing among field isolates of the green algaChlamydomonas reinhardtii. Molecular Ecology, 2019, 28, 3977-3993.	2.0	23
6	Trophic structure modulates community rescue following acidification. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190856.	1.2	22
7	The Search for â€~Evolution-Proof' Antibiotics. Trends in Microbiology, 2018, 26, 471-483.	3.5	68
8	Evolution-proof Antibiotics: Response to Uecker. Trends in Microbiology, 2018, 26, 970-971.	3.5	0
9	Evolutionary Rescue. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 605-627.	3.8	236
10	Trophic dynamics of a simple model ecosystem. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171463.	1.2	3
11	The ghosts of selection past reduces the probability of plastic rescue but increases the likelihood of evolutionary rescue to novel stressors in experimental populations of wild yeast. Ecology Letters, 2016, 19, 289-298.	3.0	19
12	Communities that thrive in extreme conditions captured from a freshwater lake. Biology Letters, 2016, 12, 20160562.	1.0	12
13	Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nature Microbiology, 2016, 1, 15003.	5.9	161
14	Experimental macroevolution . Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152547.	1.2	10
15	Metabolic variation in natural populations of wild yeast. Ecology and Evolution, 2015, 5, 722-732.	0.8	16
16	Experimental adaptation to marine conditions by a freshwater alga. Evolution; International Journal of Organic Evolution, 2015, 69, 2662-2675.	1.1	27
17	CO2 alters community composition and response to nutrient enrichment of freshwater phytoplankton. Oecologia, 2015, 177, 875-883.	0.9	53
18	Every inch a finch: a commentary on Grant (1993) â€~Hybridization of Darwin's finches on Isla Daphne Major, Galapagos'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140287.	1.8	2

#	Article	IF	CITATIONS
19	Community rescue in experimental metacommunities. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14307-14312.	3.3	65
20	Aquatic primary production in a high-CO2 world. Trends in Ecology and Evolution, 2014, 29, 223-232.	4.2	64
21	Evolutionary rescue of a green alga kept in the dark. Biology Letters, 2013, 9, 20120823.	1.0	19
22	Evolutionary rescue and adaptation to abrupt environmental change depends upon the history of stress. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120079.	1.8	115
23	Evolutionary rescue and the limits of adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120080.	1.8	243
24	EXPERIMENTAL EVOLUTION OF HETEROTROPHY IN A GREEN ALGA. Evolution; International Journal of Organic Evolution, 2013, 67, 468-476.	1.1	33
25	The phylogenetic interpretation of biological surveys. Oikos, 2013, 122, 1380-1392.	1.2	3
26	Long-term culture at elevated atmospheric CO ₂ fails to evoke specific adaptation in seven freshwater phytoplankton species. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122598.	1.2	42
27	The incidental response to uniform natural selection. Biology Letters, 2013, 9, 20130215.	1.0	6
28	III.6. Responses to Selection: Experimental Populations. , 2013, , 230-237.		1
29	EVOLUTIONARY RESCUE OF SEXUAL AND ASEXUAL POPULATIONS IN A DETERIORATING ENVIRONMENT. Evolution; International Journal of Organic Evolution, 2012, 66, 3508-3518.	1.1	79
30	The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Global Change Biology, 2011, 17, 2525-2535.	4.2	110
31	Adaptation and Evolutionary Rescue in Metapopulations Experiencing Environmental Deterioration. Science, 2011, 332, 1327-1330.	6.0	331
32	The succession of minima in the abundance of species. Oikos, 2010, 119, 1936-1946.	1.2	0
33	Experimental genomics of fitness in yeast. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1459-1467.	1.2	38
34	Fluctuating selection: the perpetual renewal of adaptation in variable environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 87-97.	1.8	345
35	Evolutionary rescue can prevent extinction following environmental change. Ecology Letters, 2009, 12, 942-948.	3.0	450
36	Further observations on the fate of morphological variation in a population of Smooth newt larvae (Triturus vulgaris). Journal of Zoology, 2009, 185, 511-518.	0.8	0

#	Article	IF	CITATIONS
37	Adaptation, extinction and global change. Evolutionary Applications, 2008, 1, 3-16.	1.5	258
38	Saccharomyces sensu stricto as a model system for evolution and ecology. Trends in Ecology and Evolution, 2008, 23, 494-501.	4.2	113
39	Experimental evolution of resistance to an antimicrobial peptide. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 251-256.	1.2	330
40	Mutations of intermediate effect are responsible for adaptation in evolving Pseudomonas fluorescens populations. Biology Letters, 2006, 2, 236-238.	1.0	63
41	THE COMPARATIVE EVIDENCE RELATING TO FUNCTIONAL AND NEUTRAL INTERPRETATIONS OF BIOLOGICAL COMMUNITIES. Ecology, 2006, 87, 1378-1386.	1.5	49
42	THE DYNAMICS OF DIVERSIFICATION IN EVOLVING PSEUDOMONAS POPULATIONS. Evolution; International Journal of Organic Evolution, 2006, 60, 484-490.	1.1	14
43	REWINDING THE TAPE: SELECTION OF ALGAE ADAPTED TO HIGH CO2AT CURRENT AND PLEISTOCENE LEVELS OF CO2. Evolution; International Journal of Organic Evolution, 2006, 60, 1392-1401.	1.1	24
44	THE ECOLOGY AND GENETICS OF FITNESS IN CHLAMYDOMONAS. XIII. FITNESS OF LONG-TERM SEXUAL AND ASEXUAL POPULATIONS IN BENIGN ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 2006, 60, 2272-2279.	1.1	19
45	Evolution of natural algal populations at elevated CO2. Ecology Letters, 2006, 9, 129-135.	3.0	67
46	Changes in C uptake in populations of Chlamydomonas reinhardtii selected at high CO2. Plant, Cell and Environment, 2006, 29, 1812-1819.	2.8	63
47	Experimental Evolution ofPseudomonas fluorescensin Simple and Complex Environments. American Naturalist, 2005, 166, 470-480.	1.0	98
48	THE CO-DISTRIBUTION OF SPECIES IN RELATION TO THE NEUTRAL THEORY OF COMMUNITY ECOLOGY. Ecology, 2005, 86, 1757-1770.	1.5	125
49	Cross–Cordillera exchange mediated by the Panama Canal increased the species richness of local freshwater fish assemblages. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1889-1896.	1.2	46
50	The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8072-8077.	3.3	156
51	Resource competition and adaptive radiation in a microbial microcosm. Ecology Letters, 2004, 8, 38-46.	3.0	52
52	Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature, 2004, 431, 566-569.	13.7	337
53	Global Mapping of the Yeast Genetic Interaction Network. Science, 2004, 303, 808-813.	6.0	1,908
54	AN EXPERIMENTAL TEST OF LOCAL ADAPTATION IN SOIL BACTERIA. Evolution; International Journal of Organic Evolution, 2003, 57, 27-36.	1.1	78

#	Article	IF	CITATIONS
55	Divergent evolution during an experimental adaptive radiation. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1645-1650.	1.2	52
56	Arming the enemy: the evolution of resistance to self-proteins. Microbiology (United Kingdom), 2003, 149, 1367-1375.	0.7	122
57	The interpretation of biological surveys. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2531-2542.	1.2	63
58	Response to Hancock. Microbiology (United Kingdom), 2003, 149, 3344-3345.	0.7	3
59	Experimental Adaptive Radiation inPseudomonas. American Naturalist, 2002, 160, 569-581.	1.0	65
60	THE ECOLOGY AND GENETICS OF FITNESS IN CHLAMYDOMONAS. XII. REPEATED SEXUAL EPISODES INCREASE RATES OF ADAPTATION TO NOVEL ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 2002, 56, 1743.	1.1	4
61	Macroevolution simulated with autonomously replicating computer programs. Nature, 2002, 420, 810-812.	13.7	65
62	THE ECOLOGY AND GENETICS OF FITNESS IN CHLAMYDOMONAS. XII. REPEATED SEXUAL EPISODES INCREASE RATES OF ADAPTATION TO NOVEL ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 2002, 56, 1743-1753.	1.1	226
63	THE ECOLOGY AND GENETICS OF FITNESS IN CHLAMYDOMONAS. VIII. THE DYNAMICS OF ADAPTATION TO NOVEL ENVIRONMENTS AFTER A SINGLE EPISODE OF SEX. Evolution; International Journal of Organic Evolution, 2002, 56, 14-21.	1.1	64
64	The poverty of the protists. , 2001, , 46-58.		3
65	Variation in growth rate in a natural assemblage of unicellular green soil algae. Heredity, 2001, 87, 162-171.	1.2	5
66	Environmental heterogeneity and species diversity of forest sedges. Journal of Ecology, 2000, 88, 67-87.	1.9	63
67	Diversity peaks at intermediate productivity in a laboratory microcosm. Nature, 2000, 406, 508-512.	13.7	308
68	Disturbance and diversity in experimental microcosms. Nature, 2000, 408, 961-964.	13.7	276
69	THE ECOLOGY AND GENETICS OF FITNESS IN CHLAMYDOMONAS. IX. THE RATE OF ACCUMULATION OF VARIATION OF FITNESS UNDER SELECTION. Evolution; International Journal of Organic Evolution, 2000, 54, 416-424.	1.1	20
70	Mild environmental stress elicits mutations affecting fitness inChlamydomonas. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 123-129.	1.2	70
71	The Distribution of Abundance in Neutral Communities. American Naturalist, 2000, 155, 606-617.	1.0	378
72	Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales. Heredity, 1998, 80, 732-741.	1.2	76

#	Article	IF	CITATIONS
73	The advantage of sex in evolving yeast populations. Nature, 1997, 388, 465-468.	13.7	159
74	Experimental evolution in Chlamydomonas II. Genetic variation in strongly contrasted environments. Heredity, 1997, 78, 498-506.	1.2	61
75	Experimental evolution in Chlamydomonas. III. Evolution of specialist and generalist types in environments that vary in space and time. Heredity, 1997, 78, 507-514.	1.2	149
76	Experimental evolution in Chlamydomonas. III. Evolution of specialist and generalist types in environments that vary in space and time. Heredity, 1997, 78, 507-514.	1.2	25
77	THE ECOLOGY AND GENETICS OF FITNESS IN <i>CHLAMYDOMONAS. </i> VII. THE EFFECT OF SEX ON THE VARIANCE IN FITNESS AND MEAN FITNESS. Evolution; International Journal of Organic Evolution, 1996, 50, 1705-1713.	1.1	10
78	The ecology and genetics of fitness in forest plants. IV. Quantitative genetics of fitness components in <i>Impatiens pallida</i> (Balsaminaceae). American Journal of Botany, 1994, 81, 232-239.	0.8	13
79	NOTE. ISOLATION OF FOUR NEW STRAINS OF CHLAMYDOMONAS REINHARDTII (CHLOROPHYTA) FROM SOIL SAMPLES1. Journal of Phycology, 1994, 30, 770-773.	1.0	39
80	TRANSPOSON ABUNDANCE IN SEXUAL AND ASEXUAL POPULATIONS OF <i>CHLAMYDOMONAS REINHARDTII</i> . Evolution; International Journal of Organic Evolution, 1994, 48, 1406-1409.	1.1	7
81	The ecology and genetics of fitness in forest plants. IV. Quantitative genetics of fitness components in Impatiens pallida (Balsaminaceae). , 1994, 81, 232.		16
82	Pathogen evolution within host individuals as a primary cause of senescence. Genetica, 1993, 91, 21-34.	0.5	12
83	The Ecology and Genetics of Fitness in Chlamydomonas. V. The Relationship between Genetic Correlation and Environmental Variance. Evolution; International Journal of Organic Evolution, 1992, 46, 561.	1.1	12
84	THE ECOLOGY AND GENETICS OF FITNESS IN <i>CHLAMYDOMONAS.</i> V. THE RELATIONSHIP BETWEEN GENETIC CORRELATION AND ENVIRONMENTAL VARIANCE. Evolution; International Journal of Organic Evolution, 1992, 46, 561-566.	1.1	32
85	Tests of sib diversification theories of outcrossing in Impatiens capensis: Effects of inbreeding and neighbour relatedness on production and infestation. Journal of Evolutionary Biology, 1992, 5, 575-588.	0.8	12
86	Sources of variance in protein heterozygosity: the importance of the species-protein interaction. Heredity, 1992, 68, 241-252.	1.2	7
87	The Ecology and Genetics of Fitness in Forest Plants. II. Microspatial Heterogeneity of the Edaphic Environment. Journal of Ecology, 1991, 79, 687.	1.9	249
88	DEVELOPMENTAL MUTANTS OF <i>VOLVOX</i> : DOES MUTATION RECREATE THE PATTERNS OF PHYLOGENETIC DIVERSITY?. Evolution; International Journal of Organic Evolution, 1991, 45, 1806-1822.	1.1	8
89	THE ECOLOGY AND GENETICS OF FITNESS IN <i>CHLAMYDOMONAS</i> III. GENOTYPE-BY-ENVIRONMENT INTERACTION WITHIN STRAINS. Evolution; International Journal of Organic Evolution, 1991, 45, 668-679.	1.1	13
90	THE ECOLOGY AND GENETICS OF FITNESS IN <i>CHLAMYDOMONAS</i> . IV. THE PROPERTIES OF MIXTURES OF GENOTYPES OF THE SAME SPECIES. Evolution; International Journal of Organic Evolution, 1991, 45, 1036-1046.	1.1	20

#	Article	IF	CITATIONS
91	Sex differences in recombination. Journal of Evolutionary Biology, 1991, 4, 259-277.	0.8	135
92	The Ecology and Genetics of Fitness in Forest Plants. I. Environmental Heterogeneity Measured by Explant Trials. Journal of Ecology, 1991, 79, 663.	1.9	85
93	The Ecology and Genetics of Fitness in Chlamydomonas III. Genotype-By- Environment Interaction Within Strains. Evolution; International Journal of Organic Evolution, 1991, 45, 668.	1.1	25
94	The small-scale spatial distribution of male and female plants. Oecologia, 1989, 80, 229-235.	0.9	51
95	Recombination and the immortality of the germ line. Journal of Evolutionary Biology, 1988, 1, 67-82.	0.8	58
96	Mammalian chiasma frequencies as a test of two theories of recombination. Nature, 1987, 326, 803-805.	13.7	213
97	Short-term selection for recombination among mutually antagonistic species. Nature, 1987, 328, 66-68.	13.7	126
98	Red Queen versus Tangled Bank models. Nature, 1987, 330, 118-118.	13.7	15
99	OPTIMALITY AND CONSTRAINT IN A SELF-FERTILIZED ALGA. Evolution; International Journal of Organic Evolution, 1986, 40, 194-198.	1.1	16
100	REPLY TO REZNICK ET AL Evolution; International Journal of Organic Evolution, 1986, 40, 1344-1346.	1.1	10
101	Partitioning the transplant site effect in reciprocal transplant experiments with Impatiens capensis and Impatiens pallida. Oecologia, 1986, 70, 149-154.	0.9	39
102	Measuring the cost of reproduction. Oecologia, 1984, 64, 81-86.	0.9	56
103	MEASURING THE COST OF REPRODUCTION. I. THE CORRELATION STRUCTURE OF THE LIFE TABLE OF A PLANKTON ROTIFER. Evolution; International Journal of Organic Evolution, 1984, 38, 300-313.	1.1	73
104	MEASURING THE COST OF REPRODUCTION. II. THE CORRELATION STRUCTURE OF THE LIFE TABLES OF FIVE FRESHWATER INVERTEBRATES. Evolution; International Journal of Organic Evolution, 1984, 38, 314-326.	1.1	55
105	Measuring the cost of reproduction. Oecologia, 1983, 60, 378-383.	0.9	23
106	THE HANDICAP PRINCIPLE IN SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 1978, 32, 872-885.	1.1	37
107	A Gillnet Fishery Considered as an Experiment in Artificial Selection. Journal of the Fisheries Research Board of Canada, 1977, 34, 954-961.	1.0	107
108	U-shaped gene frequency distributions. Nature, 1977, 268, 374-374.	13.7	1