
Gian Marco Leggio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5879682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyphenols and neuroprotection: Therapeutic implications for cognitive decline. , 2022, 232, 108013.		71
2	Long-lasting rescue of schizophrenia-relevant cognitive impairments via risperidone-loaded microPlates. Drug Delivery and Translational Research, 2022, 12, 1829-1842.	3.0	5
3	Dopamine D3 Receptor, Cognition and Cognitive Dysfunctions in Neuropsychiatric Disorders: From the Bench to the Bedside. Current Topics in Behavioral Neurosciences, 2022, , .	0.8	1
4	Imputed expression of schizophreniaâ€associated genes and cognitive measures in patients with schizophrenia. Molecular Genetics & Genomic Medicine, 2022, 10, e1942.	0.6	6
5	Molecular Effects of Chronic Exposure to Palmitate in Intestinal Organoids: A New Model to Study Obesity and Diabetes. International Journal of Molecular Sciences, 2022, 23, 7751.	1.8	2
6	The epistatic interaction between the dopamine D3 receptor and dysbindin-1 modulates higher-order cognitive functions in mice and humans. Molecular Psychiatry, 2021, 26, 1272-1285.	4.1	37
7	Pharmacological and Genetic Evidence of Dopamine Receptor 3-Mediated Vasoconstriction in Isolated Mouse Aorta. Biomolecules, 2021, 11, 418.	1.8	2
8	A novel arousal-based individual screening reveals susceptibility and resilience to PTSD-like phenotypes in mice. Neurobiology of Stress, 2021, 14, 100286.	1.9	42
9	Dysregulation of miR-15a-5p, miR-497a-5p and miR-511-5p Is Associated with Modulation of BDNF and FKBP5 in Brain Areas of PTSD-Related Susceptible and Resilient Mice. International Journal of Molecular Sciences, 2021, 22, 5157.	1.8	25
10	High Glucose Exposure Impairs L-Cell Differentiation in Intestinal Organoids: Molecular Mechanisms and Clinical Implications. International Journal of Molecular Sciences, 2021, 22, 6660.	1.8	17
11	PharmacoSTORM nanoscale pharmacology reveals cariprazine binding on Islands of Calleja granule cells. Nature Communications, 2021, 12, 6505.	5.8	24
12	Antioxidant Activity of Fluoxetine and Vortioxetine in a Non-Transgenic Animal Model of Alzheimer's Disease. Frontiers in Pharmacology, 2021, 12, 809541.	1.6	22
13	Dopamine, Cognitive Impairments and Second-Generation Antipsychotics: From Mechanistic Advances to More Personalized Treatments. Pharmaceuticals, 2020, 13, 365.	1.7	27
14	Retinal biomarkers and pharmacological targets for Hermansky-Pudlak syndrome 7. Scientific Reports, 2020, 10, 3972.	1.6	7
15	A New Human Blood–Retinal Barrier Model Based on Endothelial Cells, Pericytes, and Astrocytes. International Journal of Molecular Sciences, 2020, 21, 1636.	1.8	54
16	Dopamine: an immune transmitter. Neural Regeneration Research, 2020, 15, 2173.	1.6	64
17	Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. , 2019, 203, 107392.		86
18	Fluoxetine and Vortioxetine Reverse Depressive-Like Phenotype and Memory Deficits Induced by Aβ1-42 Oligomers in Mice: A Key Role of Transforming Growth Factor-β1. Frontiers in Pharmacology, 2019, 10, 693.	1.6	60

GIAN MARCO LEGGIO

#	Article	IF	CITATIONS
19	Blood-retinal barrier protection against high glucose damage: The role of P2X7 receptor. Biochemical Pharmacology, 2019, 168, 249-258.	2.0	39
20	Aflibercept regulates retinal inflammation elicited by high glucose via the PIGF/ERK pathway. Biochemical Pharmacology, 2019, 168, 341-351.	2.0	57
21	Dopaminergic-GABAergic interplay and alcohol binge drinking. Pharmacological Research, 2019, 141, 384-391.	3.1	18
22	Therapeutic Challenges of Post-traumatic Stress Disorder: Focus on the Dopaminergic System. Frontiers in Pharmacology, 2019, 10, 404.	1.6	32
23	Neurobiological links between depression and AD: The role of TGF-β1 signaling as a new pharmacological target. Pharmacological Research, 2018, 130, 374-384.	3.1	126
24	Identification of Dysregulated microRNA Networks in Schwann Cell-Like Cultures Exposed to Immune Challenge: Potential Crosstalk with the Protective VIP/PACAP Neuropeptide System. International Journal of Molecular Sciences, 2018, 19, 981.	1.8	9
25	Computational systems biology approach to identify novel pharmacological targets for diabetic retinopathy. Biochemical Pharmacology, 2018, 158, 13-26.	2.0	43
26	Retinal Protection and Distribution of Curcumin in Vitro and in Vivo. Frontiers in Pharmacology, 2018, 9, 670.	1.6	34
27	Tackling dipeptidyl peptidase IV in neurological disorders. Neural Regeneration Research, 2018, 13, 26.	1.6	19
28	Sulodexide prevents activation of the PLA2/COX-2/VEGF inflammatory pathway in human retinal endothelial cells by blocking the effect of AGE/RAGE. Biochemical Pharmacology, 2017, 142, 145-154.	2.0	42
29	Topical Ocular Delivery of TGF-β1 to the Back of the Eye: Implications in Age-Related Neurodegenerative Diseases. International Journal of Molecular Sciences, 2017, 18, 2076.	1.8	34
30	Buspirone Counteracts MK-801-Induced Schizophrenia-Like Phenotypes through Dopamine D3 Receptor Blockade. Frontiers in Pharmacology, 2017, 8, 710.	1.6	24
31	New drugs in psychiatry: focus on new pharmacological targets. F1000Research, 2017, 6, 397.	0.8	23
32	P2X7 receptor antagonism: Implications in diabetic retinopathy. Biochemical Pharmacology, 2017, 138, 130-139.	2.0	71
33	Fluoxetine Prevents Aβ1-42-Induced Toxicity via a Paracrine Signaling Mediated by Transforming-Growth-Factor-β1. Frontiers in Pharmacology, 2016, 7, 389.	1.6	42
34	Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat. Pharmacological Research, 2016, 111, 713-720.	3.1	84
35	Current drug treatments targeting dopamine D3 receptor. , 2016, 165, 164-177.		87
36	The antineoplastic drug flavopiridol reverses memory impairment induced by Amyloid-ß 1-42 oligomers in mice. Pharmacological Research, 2016, 106, 10-20.	3.1	32

GIAN MARCO LEGGIO

#	Article	IF	CITATIONS
37	TGF-β1 prevents rat retinal insult induced by amyloid-β (1–42) oligomers. European Journal of Pharmacology, 2016, 787, 72-77.	1.7	39
38	Effects of Topical Fucosyl-Lactose, a Milk Oligosaccharide, on Dry Eye Model: An Example of Nutraceutical Candidate. Frontiers in Pharmacology, 2015, 6, 280.	1.6	18
39	Dopamine D3 receptor-dependent changes in alpha6 GABAA subunit expression in striatum modulate anxiety-like behaviour: Responsiveness and tolerance to diazepam. European Neuropsychopharmacology, 2015, 25, 1427-1436.	0.3	28
40	Dopamine D3 Receptor Is Necessary for Ethanol Consumption: An Approach with Buspirone. Neuropsychopharmacology, 2014, 39, 2017-2028.	2.8	52
41	The dual blocker of FAAH/TRPV1 N-arachidonoylserotonin reverses the behavioral despair induced by stress in rats and modulates the HPA-axis. Pharmacological Research, 2014, 87, 151-159.	3.1	66
42	Hippocampal Neurofibromin and Amyloid Precursor Protein Expression in Dopamine D3 Receptor Knock-out Mice Following Passive Avoidance Conditioning. Neurochemical Research, 2013, 38, 564-572.	1.6	9
43	Dopamine D3 receptor as a new pharmacological target for the treatment of depression. European Journal of Pharmacology, 2013, 719, 25-33.	1.7	115
44	Regulation of intraocular pressure in mice: Structural analysis of dopaminergic and serotonergic systems in response to cabergoline. Biochemical Pharmacology, 2013, 86, 1347-1356.	2.0	16
45	Increased Hippocampal CREB Phosphorylation in Dopamine D3 Receptor Knockout Mice Following Passive Avoidance Conditioning. Neurochemical Research, 2013, 38, 2516-2523.	1.6	6
46	Behavioural and neurochemical changes induced by stress-related conditions are counteracted by the neurokinin-2 receptor antagonist saredutant. International Journal of Neuropsychopharmacology, 2013, 16, 813-823.	1.0	14
47	Fortified Extract of Red Berry, <i>Ginkgo biloba</i> , and White Willow Bark in Experimental Early Diabetic Retinopathy. Journal of Diabetes Research, 2013, 2013, 1-6.	1.0	39
48	Epigenetic drugs for <scp>A</scp> lzheimer's disease: hopes and challenges. British Journal of Clinical Pharmacology, 2013, 75, 1154-1155.	1.1	12
49	Clinical Pharmacology of Novel Anti-Alzheimer Disease Modifying Medications. Current Topics in Medicinal Chemistry, 2013, 13, 1853-1863.	1.0	12
50	New pharmacological strategies for treatment of Alzheimer's disease: focus on disease modifying drugs. British Journal of Clinical Pharmacology, 2012, 73, 504-517.	1.1	253
51	Dopamine-3 receptor modulates intraocular pressure: Implications for glaucoma. Biochemical Pharmacology, 2012, 83, 680-686.	2.0	28
52	Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats. Biochemical Pharmacology, 2012, 84, 88-92.	2.0	126
53	Homology Modeling of Dopamine D2 and D3 Receptors: Molecular Dynamics Refinement and Docking Evaluation. PLoS ONE, 2012, 7, e44316.	1.1	62
54	Tin chloride enhances parvalbumin-positive interneuron survival by modulating heme metabolism in a model of cerebral ischemia. Neuroscience Letters, 2011, 492, 33-38.	1.0	9

GIAN MARCO LEGGIO

#	Article	IF	CITATIONS
55	Dopamine D3 receptor knock-out mice exhibit increased behavioral sensitivity to the anxiolytic drug diazepam. European Neuropsychopharmacology, 2011, 21, 325-332.	0.3	26
56	Neurofibromin and Amyloid Precursor Protein Expression in Dopamine D3 Receptor Knock-Out Mice Brains. Neurochemical Research, 2011, 36, 426-434.	1.6	17
57	Enhanced cognitive performance of dopamine D3 receptor "knock-out―mice in the step-through passive-avoidance test: Assessing the role of the endocannabinoid/endovanilloid systems. Pharmacological Research, 2010, 61, 531-536.	3.1	52
58	The β3 adrenoceptor agonist, amibegron (SR58611A) counteracts stress-induced behavioral and neurochemical changes. European Neuropsychopharmacology, 2010, 20, 704-713.	0.3	30
59	Altered responses of dopamine D3 receptor null mice to excitotoxic or anxiogenic stimuli: Possible involvement of the endocannabinoid and endovanilloid systems. Neurobiology of Disease, 2009, 36, 70-80.	2.1	40
60	Parkin Expression Profile in Dopamine D3 Receptor Knock-Out Mice Brains. Neurochemical Research, 2009, 34, 327-332.	1.6	4
61	<i>In vivo</i> evidence that constitutive activity of serotonin _{2C} receptors in the medial prefrontal cortex participates in the control of dopamine release in the rat nucleus accumbens: differential effects of inverse agonist versus antagonist. Journal of Neurochemistry, 2009, 111, 614-623.	2.1	43
62	Serotonin2C receptors in the medial prefrontal cortex facilitate cocaine-induced dopamine release in the rat nucleus accumbens. Neuropharmacology, 2009, 56, 507-513.	2.0	46
63	Anxiolytic Effects in Mice of a Dual Blocker of Fatty Acid Amide Hydrolase and Transient Receptor Potential Vanilloid Type-1 Channels. Neuropsychopharmacology, 2009, 34, 593-606.	2.8	182
64	Behavioral effects of saredutant, a tachykinin NK2 receptor antagonist, in experimental models of mood disorders under basal and stress-related conditions. Pharmacology Biochemistry and Behavior, 2008, 90, 463-469.	1.3	39
65	Increased sensitivity to antidepressants of D3 dopamine receptor-deficient mice in the forced swim test (FST). European Neuropsychopharmacology, 2008, 18, 271-277.	0.3	37
66	Behavioral effects of the β3 adrenoceptor agonist SR58611A: Is it the putative prototype of a new class of antidepressant/anxiolytic drugs?. European Journal of Pharmacology, 2007, 573, 139-147.	1.7	51
67	Oral Echinacea purpurea Extract in Low-Grade, Steroid-Dependent, Autoimmune Idiopathic Uveitis: A Pilot Study. Journal of Ocular Pharmacology and Therapeutics, 2006, 22, 431-436.	0.6	10
68	Effects of the COOH-terminal tripeptide α-MSH11–13 on corneal epithelial wound healing: Role of nitric oxide. Experimental Eye Research, 2006, 83, 1366-1372.	1.2	31
69	Cognitive effects of SL65.0155, a serotonin 5-HT4 receptor partial agonist, in animal models of amnesia. Brain Research, 2006, 1121, 207-215.	1.1	37