Yong Niu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5878787/publications.pdf

Version: 2024-02-01

361413 265206 2,373 42 47 20 h-index citations g-index papers 47 47 47 2546 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Content Distribution Based on Joint V2I and V2V Scheduling in mmWave Vehicular Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 3201-3213.	6.3	10
2	A 3D Geometry-Based THz Channel Model for 6G Ultra Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2022, 71, 2251-2266.	6.3	19
3	Deep Reinforcement Learning Coordinated Receiver Beamforming for Millimeter-Wave Train-Ground Communications. IEEE Transactions on Vehicular Technology, 2022, 71, 5156-5171.	6.3	8
4	Resource Allocation and Computation Offloading in a Millimeter-Wave Train-Ground Network. IEEE Transactions on Vehicular Technology, 2022, 71, 10615-10630.	6.3	6
5	Coalition Game Based User Association for mmWave Mobile Relay Systems in Rail Traffic Scenarios. IEEE Transactions on Vehicular Technology, 2021, 70, 10528-10540.	6.3	2
6	Energy-Constrained Computation Offloading in Space-Air-Ground Integrated Networks Using Distributionally Robust Optimization. IEEE Transactions on Vehicular Technology, 2021, 70, 12113-12125.	6.3	28
7	Resource Allocation for Millimeter-Wave Train-Ground Communications in brk? High-Speed Railway Scenarios. IEEE Transactions on Vehicular Technology, 2021, 70, 4823-4838.	6.3	13
8	Reconfigurable Intelligent Surface Assisted Device-to-Device Communications. IEEE Transactions on Wireless Communications, 2021, 20, 2792-2804.	9.2	75
9	MIMO-Aided Nonlinear Hybrid Transceiver Design for Multiuser Mmwave Systems Relying on Tomlinson-Harashima Precoding. IEEE Transactions on Vehicular Technology, 2021, 70, 6943-6957.	6.3	8
10	Joint Optimization of Path Planning and Resource Allocation in Mobile Edge Computing. IEEE Transactions on Mobile Computing, 2020, 19, 2129-2144.	5.8	48
11	A Comprehensive Survey on Mobility-Aware D2D Communications: Principles, Practice and Challenges. IEEE Communications Surveys and Tutorials, 2020, 22, 1863-1886.	39.4	95
12	A Wideband Non-Stationary Air-to-Air Channel Model for UAV Communications. IEEE Transactions on Vehicular Technology, 2020, 69, 1214-1226.	6.3	78
13	QoS-Aware Bandwidth Allocation and Concurrent Scheduling for Terahertz Wireless Backhaul Networks. IEEE Access, 2020, 8, 125814-125825.	4.2	10
14	Impact of UAV Rotation on MIMO Channel Characterization for Air-to-Ground Communication Systems. IEEE Transactions on Vehicular Technology, 2020, 69, 12418-12431.	6.3	72
15	Coalition Game Based Full-Duplex Popular Content Distribution in mmWave Vehicular Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 13836-13848.	6.3	8
16	Efficient Hybrid Beamforming With Anti-Blockage Design for High-Speed Railway Communications. IEEE Transactions on Vehicular Technology, 2020, 69, 9643-9655.	6.3	28
17	Sub-Channel Allocation for Full-Duplex Access and Device-to-Device Links Underlaying Heterogeneous Cellular Networks Using Coalition Formation Games. IEEE Transactions on Vehicular Technology, 2020, 69, 9736-9749.	6.3	7
18	Reconfigurable Intelligent Surface Assisted D2D Networks: Power and Discrete Phase Shift Design. , 2020, , .		3

#	Article	IF	Citations
19	Energy-Efficient Power Control of Train–Ground mmWave Communication for High-Speed Trains. IEEE Transactions on Vehicular Technology, 2019, 68, 7704-7714.	6.3	16
20	Relay Assisted Concurrent Scheduling to Overcome Blockage in Full-Duplex Millimeter Wave Small Cells. IEEE Access, 2019, 7, 105755-105767.	4.2	5
21	Sub-Channel Allocation for Device-to-Device Underlaying Full-Duplex mmWave Small Cells Using Coalition Formation Games. IEEE Transactions on Vehicular Technology, 2019, 68, 11915-11927.	6.3	12
22	Resource Allocation for Device-to-Device Communications in Multi-Cell Multi-Band Heterogeneous Cellular Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 4760-4773.	6.3	38
23	Relay-Assisted and QoS Aware Scheduling to Overcome Blockage in mmWave Backhaul Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 1733-1744.	6.3	34
24	Energy-Efficient Full-Duplex Concurrent Scheduling Based on Contention Graph in mmWave Backhaul Networks. IEEE Access, 2019, 7, 178007-178019.	4.2	2
25	Device-to-Device Communications Enabled Multicast Scheduling for mmWave Small Cells Using Multi-Level Codebooks. IEEE Transactions on Vehicular Technology, 2019, 68, 2724-2738.	6.3	20
26	Device-to-Device Communications Enabled Multicast Scheduling with the Multi-level Codebook in mmWave Small Cells. Mobile Networks and Applications, 2019, 24, 1603-1617.	3.3	5
27	Mobility-Aware Fog Computing in Dynamic Environments: Understandings and Implementation. IEEE Access, 2019, 7, 38867-38879.	4.2	51
28	QoS-Aware Full-Duplex Concurrent Scheduling for Millimeter Wave Wireless Backhaul Networks. IEEE Access, 2018, 6, 25313-25322.	4.2	24
29	Device-to-Device Communications Enabled Energy Efficient Multicast Scheduling in mmWave Small Cells. IEEE Transactions on Communications, 2018, 66, 1093-1109.	7.8	54
30	Mobility-Aware Caching Scheduling for Fog Computing in mmWave Band. IEEE Access, 2018, 6, 69358-69370.	4.2	9
31	Mobility-Aware Transmission Scheduling Scheme for Millimeter-Wave Cells. IEEE Transactions on Wireless Communications, 2018, 17, 5991-6004.	9.2	20
32	Resource Allocation for Device-to-Device Communications Underlaying Heterogeneous Cellular Networks Using Coalitional Games. IEEE Transactions on Wireless Communications, 2018, 17, 4163-4176.	9.2	91
33	Dynamic mmWave beam tracking for high speed railway communications. , 2018, , .		27
34	Evaluating the Impact of User Behavior on D2D Communications in Millimeter-Wave Small Cells. IEEE Transactions on Vehicular Technology, 2017, 66, 6362-6377.	6.3	5
35	Low complexity and near-optimal beam selection for millimeter wave MIMO systems., 2017,,.		7
36	Energy-Efficient Scheduling for mmWave Backhauling of Small Cells in Heterogeneous Cellular Networks. IEEE Transactions on Vehicular Technology, 2017, 66, 2674-2687.	6.3	100

#	Article	IF	Citations
37	Low Complexity and Robust Codebook-Based Analog Beamforming for Millimeter Wave MIMO Systems. IEEE Access, 2017, 5, 19824-19834.	4.2	10
38	A two stage approach for channel transmission rate aware scheduling in directional mmWave WPANs. Wireless Communications and Mobile Computing, 2016, 16, 313-329.	1.2	11
39	Throughput enhancement of IEEE 802.11ad through spaceâ€time division multiple access scheduling of multiple coâ€channel networks. IET Communications, 2016, 10, 425-434.	2.2	5
40	QoS-aware scheduling for small cell millimeter wave mesh backhaul. , 2016, , .		31
41	Exploiting multi-hop relaying to overcome blockage in directional mmwave small cells. Journal of Communications and Networks, 2016, 18, 364-374.	2.6	42
42	Boosting Spatial Reuse via Multiple-Path Multihop Scheduling for Directional mmWave WPANs. IEEE Transactions on Vehicular Technology, 2016, 65, 6614-6627.	6.3	20
43	Exploiting Device-to-Device Communications to Enhance Spatial Reuse for Popular Content Downloading in Directional mmWave Small Cells. IEEE Transactions on Vehicular Technology, 2016, 65, 5538-5550.	6.3	43
44	Exploiting Device-to-Device Communications in Joint Scheduling of Access and Backhaul for mmWave Small Cells. IEEE Journal on Selected Areas in Communications, 2015, 33, 2052-2069.	14.0	121
45	A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wireless Networks, 2015, 21, 2657-2676.	3.0	972
46	Blockage Robust and Efficient Scheduling for Directional mmWave WPANs. IEEE Transactions on Vehicular Technology, 2015, 64, 728-742.	6.3	78
47	Reduced-routing complexity decoder for high-rate QC-LDPC codes. , 2011, , .		2