Stefano Cacchione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5878694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TGS1 mediates 2,2,7-trimethyl guanosine capping of the human telomerase RNA to direct telomerase dependent telomere maintenance. Nature Communications, 2022, 13, 2302.	12.8	11
2	Atomic Force Reveals that the Telomere-Capping Protein Verrocchio Is a Single-Stranded DNA-Binding Protein. Methods in Molecular Biology, 2021, 2281, 241-263.	0.9	0
3	Effect of space flight on the behavior of human retinal pigment epithelial ARPE-19 cells and evaluation of coenzyme Q10 treatment. Cellular and Molecular Life Sciences, 2021, 78, 7795-7812.	5.4	11
4	The Sâ€adenosylmethionine analog sinefungin inhibits the trimethylguanosine synthase TGS1 to promote telomerase activity and telomere lengthening. FEBS Letters, 2021, , .	2.8	3
5	Intimate functional interactions betweenÂTGS1 and the SmnÂcomplex revealed by an analysis of the Drosophila eye development. PLoS Genetics, 2020, 16, e1008815.	3.5	3
6	Silence at the End: How Drosophila Regulates Expression and Transposition of Telomeric Retroelements. Journal of Molecular Biology, 2020, 432, 4305-4321.	4.2	29
7	Loss of Human TGS1 Hypermethylase Promotes Increased Telomerase RNA and Telomere Elongation. Cell Reports, 2020, 30, 1358-1372.e5.	6.4	34
8	Emerging roles of telomeric chromatin alterations in cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 21.	8.6	30
9	The Coenzyme Q10 (CoQ10) as Countermeasure for Retinal Damage Onboard the International Space Station: the CORM Project. Microgravity Science and Technology, 2018, 30, 925-931.	1.4	3
10	WDR79/TCAB1 plays a conserved role in the control of locomotion and ameliorates phenotypic defects in SMA models. Neurobiology of Disease, 2017, 105, 42-50.	4.4	22
11	The Drosophila telomere-capping protein Verrocchio binds single-stranded DNA and protects telomeres from DNA damage response. Nucleic Acids Research, 2017, 45, 3068-3085.	14.5	19
12	Evidence for a quadruplex structure in the polymorphic hs1.2 enhancer of the immunoglobulin heavy chain 3' regulatory regions and its conservation in mammals. Biopolymers, 2016, 105, 768-778.	2.4	6
13	Perylene and coronene derivatives binding to G-rich promoter oncogene sequences efficiently reduce their expression in cancer cells. Biochimie, 2016, 125, 223-231.	2.6	21
14	A role for Separase in telomere protection. Nature Communications, 2016, 7, 10405.	12.8	20
15	TRF1 and TRF2 binding to telomeres is modulated by nucleosomal organization. Nucleic Acids Research, 2015, 43, 5824-5837.	14.5	31
16	AKTIP/Ft1, a New Shelterin-Interacting Factor Required for Telomere Maintenance. PLoS Genetics, 2015, 11, e1005167.	3.5	38
17	Design and synthesis of a new dimeric xanthone derivative: enhancement of G-quadruplex selectivity and telomere damage. Organic and Biomolecular Chemistry, 2014, 12, 9572-9582.	2.8	14
18	Chromatin Structure in Telomere Dynamics. Frontiers in Oncology, 2013, 3, 46.	2.8	72

STEFANO CACCHIONE

#	Article	IF	CITATIONS
19	TRF2 Controls Telomeric Nucleosome Organization in a Cell Cycle Phase-Dependent Manner. PLoS ONE, 2012, 7, e34386.	2.5	38
20	Self-organization of G-quadruplex structures in the hTERT core promoter stabilized by polyaminic side chain perylene derivatives. Biophysical Chemistry, 2010, 153, 43-53.	2.8	26
21	Verrocchio, a Drosophila OB fold-containing protein, is a component of the terminin telomere-capping complex. Genes and Development, 2010, 24, 1596-1601.	5.9	61
22	The human telomeric protein hTRF1 induces telomere-specific nucleosome mobility. Nucleic Acids Research, 2010, 38, 2247-2255.	14.5	31
23	Telomeric Nucleosomes Are Intrinsically Mobile. Journal of Molecular Biology, 2007, 369, 1153-1162.	4.2	48
24	The Human Telomeric Protein TRF1 Specifically Recognizes Nucleosomal Binding Sites and Alters Nucleosome Structure. Journal of Molecular Biology, 2006, 360, 377-385.	4.2	31
25	AFM imaging and theoretical modeling studies of sequence-dependent nucleosome positioning. Biophysical Chemistry, 2006, 124, 81-89.	2.8	24
26	Organization of telomeric nucleosomes: atomic force microscopy imaging and theoretical modeling. FEBS Letters, 2004, 566, 131-135.	2.8	18
27	Acetylated nucleosome assembly on telomeric DNAs. Biophysical Chemistry, 2003, 104, 381-392.	2.8	14
28	Specific interactions of the telomeric protein rap1p with nucleosomal binding sites. Journal of Molecular Biology, 2001, 306, 903-913.	4.2	35
29	The main role of the sequence-dependent DNA elasticity in determining the free energy of nucleosome formation on telomeric DNAs. Biophysical Chemistry, 2000, 83, 223-237.	2.8	40
30	Nucleosome Assembly on Telomeric Sequences. Biochemistry, 1998, 37, 6727-6737.	2.5	62
31	In vitro low propensity to form nucleosomes of four telomeric sequences. FEBS Letters, 1997, 400, 37-41.	2.8	58
32	Multiple nucleosome positioning with unique rotational phasing on multimers of the light-responsive elements of pea rbcS-3A and rbcS-3.6 genes: comparison between experimental and theoretical mapping. Biophysical Chemistry, 1997, 67, 151-158.	2.8	2
33	Different flexibility of the upstream regulatory regions of two differently expressed pearbcSgenes studied by theoretical evaluation of DNA distortion energy and cyclization kinetics. FEBS Letters, 1993, 336, 293-298.	2.8	3
34	Different superstructural features of the complexes between spermine and the light responsive elements of the two pea genes rbcS-3A and rbcS-3.6. Gel electrophoresis and circular dichroism studies. Biophysical Chemistry, 1992, 44, 99-112.	2.8	9
35	Different superstructural features of the light responsive elements of the pea genesrbcS-3AandrbcS-3.6. FEBS Letters, 1991, 289, 244-248.	2.8	6
36	Periodical polydeoxynucleotides and DNA curvature. Biochemistry, 1989, 28, 8706-8713.	2.5	62

#	Article	IF	CITATIONS
37	Selective binding of actinomycin D induces a reversible conformational transition of nucleosomes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1986, 867, 229-233.	2.4	11