Ali Mokhtar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5878386/publications.pdf

Version: 2024-02-01

840776 888059 19 400 11 17 citations h-index g-index papers 19 19 19 293 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Estimation of SPEI Meteorological Drought Using Machine Learning Algorithms. IEEE Access, 2021, 9, 65503-65523.	4.2	76
2	Prediction of Combined Terrestrial Evapotranspiration Index (CTEI) over Large River Basin Based on Machine Learning Approaches. Water (Switzerland), 2021, 13, 547.	2.7	57
3	Applications of Gaussian process regression for predicting blue water footprint: Case study in Ad Daqahliyah, Egypt. Agricultural Water Management, 2021, 255, 107052.	5.6	35
4	Spatial and temporal variability analysis of green and blue evapotranspiration of wheat in the Egyptian Nile Delta from 1997 to 2017. Journal of Hydrology, 2021, 594, 125662.	5.4	30
5	Evapotranspiration as a response to climate variability and ecosystem changes in southwest, China. Environmental Earth Sciences, 2020, 79, 1.	2.7	28
6	Prediction of irrigation water quality indices based on machine learning and regression models. Applied Water Science, 2022, 12, 1.	5.6	27
7	Application of neural network and time series modeling to study the suitability of drain water quality for irrigation: a case study from Egypt. Environmental Science and Pollution Research, 2021, 28, 898-914.	5 . 3	24
8	Using Machine Learning Models to Predict Hydroponically Grown Lettuce Yield. Frontiers in Plant Science, 2022, 13, 706042.	3.6	21
9	Risks to water resources and development of a management strategy in the river basins of the Hengduan Mountains, Southwest China. Environmental Science: Water Research and Technology, 2020, 6, 656-678.	2.4	17
10	Assessment of the effects of spatiotemporal characteristics of drought on crop yields in southwest China. International Journal of Climatology, 2022, 42, 3056-3075.	3.5	16
11	Estimation of the rice water footprint based on machine learning algorithms. Computers and Electronics in Agriculture, 2021, 191, 106501.	7.7	12
12	The Impact of Climate Change and Human Activity on Spatiotemporal Patterns of Multiple Cropping Index in South West China. Sustainability, 2019, 11, 5308.	3.2	11
13	Integrated Modeling of Water Supply and Demand Under Climate Change Impacts and Management Options in Tributary Basin of Tonle Sap Lake, Cambodia. Water (Switzerland), 2020, 12, 2462.	2.7	11
14	An evapotranspiration deficit-based drought index to detect variability of terrestrial carbon productivity in the Middle East. Environmental Research Letters, 2022, 17, 014051.	5.2	11
15	Ecosystem water use efficiency response to drought over southwest China. Ecohydrology, 2022, 15, e2317.	2.4	10
16	Analysis of relationship between soil erosion and lake deposition during the Holocene in Xingyun Lake, southwestern China. Holocene, 0, , 095968362110190.	1.7	6
17	Assessing the WEPP model performance for predicting daily runoff in three terrestrial ecosystems in western Syria. Heliyon, 2021, 7, e06764.	3.2	3
18	Winter Potato Water Footprint Response to Climate Change in Egypt. Atmosphere, 2022, 13, 1052.	2.3	3

Ali Mokhtar

#	Article	IF	CITATIONS
19	Perspective of agricultural water safety under combined future changes in crop water requirements and climate conditions in China. Theoretical and Applied Climatology, 0 , 0 , 0 .	2.8	2