List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5878085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural diversity, biosynthesis, and function of plant falcarin-type polyacetylenic lipids. Journal of Experimental Botany, 2022, 73, 2889-2904.	4.8	10
2	Better together: Protein partnerships for lineage-specific oil accumulation. Current Opinion in Plant Biology, 2022, 66, 102191.	7.1	9
3	Chemical and genetic variation in feral Cannabis sativa populations across the Nebraska climate gradient. Phytochemistry, 2022, 200, 113206.	2.9	10
4	Variation on a theme: the structures and biosynthesis of specialized fatty acid natural products in plants. Plant Journal, 2022, 111, 954-965.	5.7	5
5	Generation of camelina mid-oleic acid seed oil by identification and stacking of fatty acid biosynthetic mutants. Industrial Crops and Products, 2021, 159, 113074.	5.2	2
6	Mass Spectrometry-Based Profiling of Plant Sphingolipids from Typical and Aberrant Metabolism. Methods in Molecular Biology, 2021, 2295, 157-177.	0.9	3
7	Generating Pennycress (Thlaspi arvense) Seed Triacylglycerols and Acetyl-Triacylglycerols Containing Medium-Chain Fatty Acids. Frontiers in Energy Research, 2021, 9, .	2.3	8
8	Plasma and vacuolar membrane sphingolipidomes: composition and insights on the role of main molecular species. Plant Physiology, 2021, 186, 624-639.	4.8	15
9	Production of tocotrienols in seeds of cotton (<i>Gossypium hirsutum</i> L.) enhances oxidative stability and offers nutraceutical potential. Plant Biotechnology Journal, 2021, 19, 1268-1282.	8.3	17
10	A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
11	CRISPR/Cas9-Induced fad2 and rod1 Mutations Stacked With fae1 Confer High Oleic Acid Seed Oil in Pennycress (Thlaspi arvense L.). Frontiers in Plant Science, 2021, 12, 652319.	3.6	25
12	Multi-strategy engineering greatly enhances provitamin A carotenoid accumulation and stability in Arabidopsis seeds. ABIOTECH, 2021, 2, 191-214.	3.9	11
13	Genetic Engineering of Lesquerella with Increased Ricinoleic Acid Content in Seed Oil. Plants, 2021, 10, 1093.	3.5	4
14	Quantitative trait loci controlling agronomic and biochemical traits in <i>Cannabis sativa</i> . Genetics, 2021, 219, .	2.9	14
15	Disruption of long hain base hydroxylation alters growth and impacts sphingolipid synthesis in Physcomitrella patens. Plant Direct, 2021, 5, e336.	1.9	3
16	Toward sustainable production of valueâ€∎dded bioenergy and industrial oils in oilseed and biomass feedstocks. GCB Bioenergy, 2021, 13, 1610-1623.	5.6	7
17	Dissecting the regulatory roles of ORM proteins in the sphingolipid pathway of plants. PLoS Computational Biology, 2021, 17, e1008284.	3.2	7
18	Molecular-assisted breeding for soybean with high oleic/low linolenic acid and elevated vitamin E in the seed oil. Molecular Breeding, 2021, 41, 1.	2.1	7

#	Article	IF	CITATIONS
19	Plasma Membrane Fluidity: An Environment Thermal Detector in Plants. Cells, 2021, 10, 2778.	4.1	22
20	Green Chemistry Production of Codlemone, the Sex Pheromone of the Codling Moth (Cydia) Tj ETQq0 0 0 rgBT Chemical Ecology, 2021, 47, 950-967.	/Overlock 1.8	10 Tf 50 707 12
21	Metabolic engineering of soybean seeds for enhanced vitamin E tocochromanol content and effects on oil antioxidant properties in polyunsaturated fatty acid-rich germplasm. Metabolic Engineering, 2020, 57, 63-73.	7.0	26
22	Biotechnology tools and applications for development of oilseed crops with healthy vegetable oils. Biochimie, 2020, 178, 4-14.	2.6	25
23	Stearidonicâ€Enriched Soybean Oil Modulates Obesity, Glucose Metabolism, and Fatty Acid Profiles Independently of <i>Akkermansia muciniphila</i> . Molecular Nutrition and Food Research, 2020, 64, e2000162.	3.3	8
24	Variability in structural carbohydrates, lipid composition, and cellulosic sugar production from industrial hemp varieties. Industrial Crops and Products, 2020, 157, 112906.	5.2	20
25	The Lipid Flippases ALA4 and ALA5 Play Critical Roles in Cell Expansion and Plant Growth. Plant Physiology, 2020, 182, 2111-2125.	4.8	11
26	Unregulated Sphingolipid Biosynthesis in Gene-Edited Arabidopsis <i>ORM</i> Mutants Results in Nonviable Seeds with Strongly Reduced Oil Content. Plant Cell, 2020, 32, 2474-2490.	6.6	21
27	RGPDB: database of root-associated genes and promoters in maize, soybean, and sorghum. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	3.0	8
28	The genome evolution and domestication of tropical fruit mango. Genome Biology, 2020, 21, 60.	8.8	104
29	Oil crops for the future. Current Opinion in Plant Biology, 2020, 56, 181-189.	7.1	38
30	Identification and stacking of crucial traits required for the domestication of pennycress. Nature Food, 2020, 1, 84-91.	14.0	54
31	Lubrication characteristics of wax esters from oils produced by a genetically-enhanced oilseed crop. Tribology International, 2020, 146, 106234.	5.9	10
32	Plant unusual fatty acids: learning from the less common. Current Opinion in Plant Biology, 2020, 55, 66-73.	7.1	41
33	Nature-Guided Synthesis of Advanced Bio-Lubricants. Scientific Reports, 2019, 9, 11711.	3.3	33
34	Identification of Climate and Genetic Factors That Control Fat Content and Fatty Acid Composition of Theobroma cacao L. Beans. Frontiers in Plant Science, 2019, 10, 1159.	3.6	19
35	Field performance of terpene-producing Camelina sativa. Industrial Crops and Products, 2019, 136, 50-58.	5.2	9
36	Mapping of transgenic alleles in soybean using a nanopore-based sequencing strategy. Journal of Experimental Botany, 2019, 70, 3825-3833.	4.8	24

#	Article	IF	CITATIONS
37	Expression of the Arabidopsis <scp>WRINKLED</scp> 1 transcription factor leads to higher accumulation of palmitate in soybean seed. Plant Biotechnology Journal, 2019, 17, 1369-1379.	8.3	17
38	<i>FAD2</i> Gene Radiation and Positive Selection Contributed to Polyacetylene Metabolism Evolution in Campanulids. Plant Physiology, 2019, 181, 714-728.	4.8	12
39	Extraction of astaxanthin from engineered Camelina sativa seed using ethanol-modified supercritical carbon dioxide. Journal of Supercritical Fluids, 2019, 143, 171-178.	3.2	28
40	Molecular tools enabling pennycress (<i>Thlaspi arvense</i>) as a model plant and oilseed cash cover crop. Plant Biotechnology Journal, 2019, 17, 776-788.	8.3	75
41	A Plant Immune Receptor Degraded by Selective Autophagy. Molecular Plant, 2019, 12, 113-123.	8.3	57
42	Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch. Plant Biotechnology Journal, 2018, 16, 1186-1200.	8.3	49
43	Endoplasmic reticulum acyltransferase with prokaryotic substrate preference contributes to triacylglycerol assembly in <i>Chlamydomonas</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1652-1657.	7.1	53
44	Development of iFOX â€hunting as a functional genomic tool and demonstration of its use to identify early senescenceâ€related genes in the polyploid Brassica napus. Plant Biotechnology Journal, 2018, 16, 591-602.	8.3	24
45	Lipid composition and emulsifying properties of Camelina sativa seed lecithin. Food Chemistry, 2018, 242, 139-146.	8.2	28
46	Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil. Plant Biotechnology Journal, 2018, 16, 926-938.	8.3	32
47	Identification of Genes Encoding Enzymes Catalyzing the Early Steps of Carrot Polyacetylene Biosynthesis. Plant Physiology, 2018, 178, 1507-1521.	4.8	26
48	Towards the synthetic design of camelina oil enriched in tailored acetyl-triacylglycerols with medium-chain fatty acids. Journal of Experimental Botany, 2018, 69, 4395-4402.	4.8	30
49	GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) Is a GlcNAc-Containing Glycosylinositol Phosphorylceramide Glycosyltransferase. Plant Physiology, 2018, 177, 938-952.	4.8	35
50	Transcriptional Regulation of Vitamin E Biosynthesis during Germination of Dwarf Fan Palm Seeds. Plant and Cell Physiology, 2018, 59, 2490-2501.	3.1	8
51	Discontinuous fatty acid elongation yields hydroxylated seed oil with improved function. Nature Plants, 2018, 4, 711-720.	9.3	43
52	Effect of Extraction Method on the Oxidative Stability of Camelina Seed Oil Studied by Differential Scanning Calorimetry. Journal of Food Science, 2017, 82, 632-637.	3.1	11
53	A Specialized Diacylglycerol Acyltransferase Contributes to the Extreme Medium-Chain Fatty Acid Content of <i>Cuphea</i> Seed Oil. Plant Physiology, 2017, 174, 97-109.	4.8	44
54	Ethanolâ€Modified Supercritical Carbon Dioxide Extraction of the Bioactive Lipid Components of <i>Camelina sativa</i> Seed. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 855-865.	1.9	24

#	Article	lF	CITATIONS
55	Significant enhancement of fatty acid composition in seeds of the allohexaploid, <i>Camelina sativa</i> , using <scp>CRISPR</scp> /Cas9 gene editing. Plant Biotechnology Journal, 2017, 15, 648-657.	8.3	285
56	Towards the development of a sustainable soya beanâ€based feedstock for aquaculture. Plant Biotechnology Journal, 2017, 15, 227-236.	8.3	24
57	Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidopsis. Plant Journal, 2017, 89, 278-290.	5.7	43
58	A Prokaryoticâ€like Lysophosphatidic Acid Acyltransferase Reveals Unique Features of Triacylglycerol Biosynthesis in Microalgae. FASEB Journal, 2017, 31, .	0.5	0
59	snRNA 3′ End Processing by a CPSF73-Containing Complex Essential for Development in Arabidopsis. PLoS Biology, 2016, 14, e1002571.	5.6	21
60	Synthetic redesign of plant lipid metabolism. Plant Journal, 2016, 87, 76-86.	5.7	72
61	Identification of Homogentisate Dioxygenase as a Target for Vitamin E Biofortification in Oilseeds. Plant Physiology, 2016, 172, 1506-1518.	4.8	43
62	Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production. Scientific Reports, 2016, 6, 22181.	3.3	46
63	Plant Sphingolipid Metabolism and Function. Sub-Cellular Biochemistry, 2016, 86, 249-286.	2.4	65
64	ORM Expression Alters Sphingolipid Homeostasis and Differentially Affects Ceramide Synthase Activities. Plant Physiology, 2016, 172, pp.00965.2016.	4.8	33
65	Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis. Biochemical Journal, 2016, 473, 593-603.	3.7	27
66	Glucosylceramides are critical for cellâ€ŧype differentiation and organogenesis, but not for cell viability in Arabidopsis. Plant Journal, 2015, 84, 188-201.	5.7	60
67	Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from <i>Cuphea</i> seeds. Plant Journal, 2015, 84, 1021-1033.	5.7	32
68	Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa. PLoS ONE, 2015, 10, e0131755.	2.5	46
69	Multiplexing strategy for simultaneous detection of redox-, phospho- and total proteome – understanding TOR regulating pathways in Chlamydomonas reinhardtii. Analytical Methods, 2015, 7, 7336-7344.	2.7	7
70	Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling. Phytochemistry, 2015, 115, 121-129.	2.9	42
71	Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis. Plant Physiology, 2015, 168, 1503-1511.	4.8	40
72	Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in <i>Camelina</i> seeds. Journal of Experimental Botany, 2015, 66, 4251-4265.	4.8	80

#	Article	IF	CITATIONS
73	Redirection of metabolic flux for high levels of omegaâ€7 monounsaturated fatty acid accumulation in camelina seeds. Plant Biotechnology Journal, 2015, 13, 38-50.	8.3	89
74	Glutamatergic receptor dysfunction in spinal cord contributes to the exaggerated exercise pressor reflex in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H447-H455.	3.2	7
75	Field production, purification and analysis of high-oleic acetyl-triacylglycerols from transgenic Camelina sativa. Industrial Crops and Products, 2015, 65, 259-268.	5.2	46
76	Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. Journal of Supercritical Fluids, 2015, 104, 153-159.	3.2	67
77	A mass spectrometry-based method for the assay of ceramide synthase substrate specificity. Analytical Biochemistry, 2015, 478, 96-101.	2.4	9
78	Development and analysis of a highly flexible multi-gene expression system for metabolic engineering in Arabidopsis seeds and other plant tissues. Plant Molecular Biology, 2015, 89, 113-126.	3.9	27
79	Overexpression of Arabidopsis Ceramide Synthases Differentially Affects Growth, Sphingolipid Metabolism, Programmed Cell Death, and Mycotoxin Resistance. Plant Physiology, 2015, 169, 1108-1117.	4.8	63
80	Production of high levels of polyâ€3â€hydroxybutyrate in plastids of <i><scp>C</scp>amelina sativa</i> seeds. Plant Biotechnology Journal, 2015, 13, 675-688.	8.3	35
81	To Grow or Die:Regulation of Plant Sphingolipid Metabolism. FASEB Journal, 2015, 29, 366.2.	0.5	Ο
82	Chlorophyll Degradation: The Tocopherol Biosynthesis-Related Phytol Hydrolase in Arabidopsis Seeds Is Still Missing Á Â Â. Plant Physiology, 2014, 166, 70-79.	4.8	58
83	Identification of a Sphingolipid α-Glucuronosyltransferase That Is Essential for Pollen Function in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2014, 26, 3314-3325.	6.6	80
84	A High-Throughput Fatty Acid Profiling Screen Reveals Novel Variations in Fatty Acid Biosynthesis in Chlamydomonas reinhardtii and Related Algae. Eukaryotic Cell, 2014, 13, 1431-1438.	3.4	15
85	The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 1938-1948.	6.6	80
86	Understanding and manipulating plant lipid composition: Metabolic engineering leads the way. Current Opinion in Plant Biology, 2014, 19, 68-75.	7.1	93
87	Imaging heterogeneity of membrane and storage lipids in transgenic <i><scp>C</scp>amelina sativa</i> seeds with altered fatty acid profiles. Plant Journal, 2013, 76, 138-150.	5.7	84
88	Two novel Physcomitrella patens fatty acid elongases (ELOs): identification and functional characterization. Applied Microbiology and Biotechnology, 2013, 97, 3485-3497.	3.6	17
89	Disruption of plastid acyl:acyl carrier protein synthetases increases medium chain fatty acid accumulation in seeds of transgenic Arabidopsis. FEBS Letters, 2013, 587, 936-942.	2.8	41
90	Genetic and biochemical basis for alternative routes of tocotrienol biosynthesis for enhanced vitamin <scp>E</scp> antioxidant production. Plant Journal, 2013, 73, 628-639.	5.7	54

#	Article	IF	CITATIONS
91	Plant sphingolipids: function follows form. Current Opinion in Plant Biology, 2013, 16, 350-357.	7.1	157
92	Identification of a cytochrome b5-fusion desaturase responsible for the synthesis of triunsaturated sphingolipid long chain bases in the marine diatom Thalassiosira pseudonana. Phytochemistry, 2013, 90, 50-55.	2.9	12
93	Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Plant Biotechnology Journal, 2013, 11, 759-769.	8.3	166
94	<i>Arabidopsis</i> 56–Amino Acid Serine Palmitoyltransferase-Interacting Proteins Stimulate Sphingolipid Synthesis, Are Essential, and Affect Mycotoxin Sensitivity Â. Plant Cell, 2013, 25, 4627-4639.	6.6	54
95	A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds. Journal of Experimental Botany, 2013, 64, 3189-3200.	4.8	42
96	Arabidopsis 3-Ketoacyl-Coenzyme A Synthase9 Is Involved in the Synthesis of Tetracosanoic Acids as Precursors of Cuticular Waxes, Suberins, Sphingolipids, and Phospholipids Â. Plant Physiology, 2013, 162, 567-580.	4.8	162
97	AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 773-778.	7.1	103
98	Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and lowâ€ŧemperature performance in Arabidopsis. Plant Journal, 2012, 69, 769-781.	5.7	140
99	Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry, 2012, 75, 50-59.	2.9	344
100	Sphingolipids in the Root Play an Important Role in Regulating the Leaf Ionome in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2011, 23, 1061-1081.	6.6	111
101	Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyl transferase. Plant Journal, 2011, 65, 206-217.	5.7	94
102	MPK6, sphinganine and the <i>LCB2a</i> gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in <i>Arabidopsis</i> . New Phytologist, 2011, 191, 943-957.	7.3	111
103	The BioCassava Plus Program: Biofortification of Cassava for Sub-Saharan Africa. Annual Review of Plant Biology, 2011, 62, 251-272.	18.7	245
104	New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Current Opinion in Biotechnology, 2011, 22, 252-259.	6.6	223
105	Reactive oxygen species as transducers of sphinganine-mediated cell death pathway. Plant Signaling and Behavior, 2011, 6, 1616-1619.	2.4	19
106	Control of Glucosylceramide Production and Morphogenesis by the Bar1 Ceramide Synthase in Fusarium graminearum. PLoS ONE, 2011, 6, e19385.	2.5	51
107	Draft genome sequence of the oilseed species Ricinus communis. Nature Biotechnology, 2010, 28, 951-956.	17.5	449
108	Soybean Oil: Genetic Approaches for Modification of Functionality and Total Content. Plant Physiology, 2009, 151, 1030-1040.	4.8	431

#	Article	IF	CITATIONS
109	Sphingolipid C-9 Methyltransferases Are Important for Growth and Virulence but Not for Sensitivity to Antifungal Plant Defensins in <i>Fusarium graminearum</i> . Eukaryotic Cell, 2009, 8, 217-229.	3.4	59
110	Lipid signaling in Arabidopsis: no sphingosine? No problem!. Trends in Plant Science, 2009, 14, 463-466.	8.8	25
111	Plant Sphingolipids: Structure, Synthesis and Function. Advances in Photosynthesis and Respiration, 2009, , 77-115.	1.0	38
112	Lossâ€ofâ€function mutations and inducible RNAi suppression of Arabidopsis <i>LCB2</i> genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. Plant Journal, 2008, 54, 284-298.	5.7	101
113	Metabolic Engineering of the Content and Fatty Acid Composition of Vegetable Oils. Advances in Plant Biochemistry and Molecular Biology, 2008, , 161-200.	0.5	16
114	Sphingolipid Long-Chain Base Hydroxylation Is Important for Growth and Regulation of Sphingolipid Content and Composition in <i>Arabidopsis</i> Â. Plant Cell, 2008, 20, 1862-1878.	6.6	144
115	The Essential Nature of Sphingolipids in Plants as Revealed by the Functional Identification and Characterization of the Arabidopsis LCB1 Subunit of Serine Palmitoyltransferase. Plant Cell, 2007, 18, 3576-3593.	6.6	138
116	Arabidopsis Mutants Lacking Long Chain Base Phosphate Lyase Are Fumonisin-sensitive and Accumulate Trihydroxy-18:1 Long Chain Base Phosphate. Journal of Biological Chemistry, 2007, 282, 28195-28206.	3.4	66
117	Glucosylceramide synthase is essential for alfalfa defensinâ€mediated growth inhibition but not for pathogenicity of <i>Fusarium graminearum</i> . Molecular Microbiology, 2007, 66, 771-786.	2.5	104
118	Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. Current Opinion in Plant Biology, 2007, 10, 236-244.	7.1	179
119	Enhancing Vitamin E in Oilseeds: Unraveling Tocopherol and Tocotrienol Biosynthesis. Lipids, 2007, 42, 97-108.	1.7	129
120	Separation and Identification of Major Plant Sphingolipid Classes from Leaves. Journal of Biological Chemistry, 2006, 281, 22684-22694.	3.4	297
121	Co-expression of the borage Δ6 desaturase and the Arabidopsis Δ15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta, 2006, 224, 1050-1057.	3.2	104
122	Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry, 2006, 67, 1166-1176.	2.9	138
123	Members of the Arabidopsis FAE1-like 3-Ketoacyl-CoA Synthase Gene Family Substitute for the Elop Proteins of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2006, 281, 9018-9029.	3.4	119
124	Deficiency in Phylloquinone (Vitamin K1) Methylation Affects Prenyl Quinone Distribution, Photosystem I Abundance, and Anthocyanin Accumulation in the Arabidopsis AtmenG Mutant. Journal of Biological Chemistry, 2006, 281, 40461-40472.	3.4	97
125	Identification and Functional Characterization of the Moss Physcomitrella patens Δ5-Desaturase Gene Involved in Arachidonic and Eicosapentaenoic Acid Biosynthesis. Journal of Biological Chemistry, 2006, 281, 21988-21997.	3.4	44
126	The production of vegetable oils with novel properties: Using genomic tools to probe and manipulate plant fatty acid metabolism. European Journal of Lipid Science and Technology, 2005, 107, 239-243.	1.5	30

#	Article	IF	CITATIONS
127	Production of 22:2?5,?13 and 20:1?5 in Brassica carinata and soybean breeding lines via introduction of Limnanthes genes. Molecular Breeding, 2005, 15, 157-167.	2.1	13
128	A Multifunctional Acyl-Acyl Carrier Protein Desaturase from Hedera helix L. (English Ivy) Can Synthesize 16- and 18-Carbon Monoene and Diene Products. Journal of Biological Chemistry, 2005, 280, 28169-28176.	3.4	44
129	Mechanistic analysis of wheat chlorophyllase. Archives of Biochemistry and Biophysics, 2005, 438, 146-155.	3.0	83
130	Dimorphecolic Acid Is Synthesized by the Coordinate Activities of Two Divergent Δ12-Oleic Acid Desaturases. Journal of Biological Chemistry, 2004, 279, 12495-12502.	3.4	49
131	Dimorphecolic acid is synthesized by the coordinate activities of two divergent Δ12-oleic acid desaturases. Vol. 279 (2004) 12495-12502. Journal of Biological Chemistry, 2004, 279, 21678.	3.4	0
132	Industrial oils from transgenic plants. Current Opinion in Plant Biology, 2003, 6, 178-184.	7.1	170
133	Fungal responsive fatty acid acetylenases occur widely in evolutionarily distant plant families. Plant Journal, 2003, 34, 671-683.	5.7	55
134	Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nature Biotechnology, 2003, 21, 1082-1087.	17.5	365
135	Characterization of Tocopherol Cyclases from Higher Plants and Cyanobacteria. Evolutionary Implications for Tocopherol Synthesis and Function. Plant Physiology, 2003, 132, 2184-2195.	4.8	239
136	Transgenic Production of Epoxy Fatty Acids by Expression of a Cytochrome P450 Enzyme from Euphorbia lagascaeSeed. Plant Physiology, 2002, 128, 615-624.	4.8	108
137	An unusual seed-specific 3-ketoacyl-ACP synthase associated with the biosynthesis of petroselinic acid in coriander. Plant Molecular Biology, 2001, 47, 507-518.	3.9	23
138	Formation of Conjugated Δ8,Δ10-Double Bonds by Δ12-Oleic-acid Desaturase-related Enzymes. Journal of Biological Chemistry, 2001, 276, 2637-2643.	3.4	99
139	Production of Fatty Acid Components of Meadowfoam Oil in Somatic Soybean Embryos. Plant Physiology, 2000, 124, 243-252.	4.8	107
140	DESATURATION AND RELATED MODIFICATIONS OF FATTY ACIDS. Annual Review of Plant Biology, 1998, 49, 611-641.	14.3	808
141	A Determinant of Substrate Specificity Predicted from the Acyl-Acyl Carrier Protein Desaturase of Developing Cat's Claw Seed1. Plant Physiology, 1998, 117, 593-598.	4.8	103
142	Characterization of a structurally and functionally diverged acyl-acyl carrier protein desaturase from milkweed seed. Plant Molecular Biology, 1997, 33, 1105-1110.	3.9	44
143	Analysis of Glucocerebrosides of Rye (Secale cereale L. cv Puma) Leaf and Plasma Membrane. Plant Physiology, 1991, 95, 58-68.	4.8	92
144	Acylâ€acyl carrier protein pool dynamics with oil accumulation in nitrogenâ€deprived Chlamydomonas reinhardtii microalgal cells. JAOCS, Journal of the American Oil Chemists' Society, 0, , .	1.9	3

#	Article	IF	CITATIONS
145	Genetic and Biochemical Investigation of Seed Fatty Acid Accumulation in Arabidopsis. Frontiers in Plant Science, 0, 13, .	3.6	4