
Marcos G Alberti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5877924/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crack-Width-Based Sectional Analysis of Fiber-Reinforced Concrete Applied to the Structural Design of the Slab of a Fly-Over Bridge. Journal of Bridge Engineering, 2022, 27, .	1.4	2
2	New Use of BIM-Origami-Based Techniques for Energy Optimisation of Buildings. Applied Sciences (Switzerland), 2022, 12, 1496.	1.3	3
3	Suitability of Constitutive Models of the Structural Concrete Codes When Applied to Polyolefin Fibre Reinforced Concrete. Materials, 2022, 15, 2323.	1.3	1
4	Use of digital image correlation to connect fracture curves and sectional analysis for structural design of polyolefin fibre reinforced concrete elements. Construction and Building Materials, 2022, 328, 127039.	3.2	2
5	Numerical Simulation of the Fracture Behavior of High-Performance Fiber-Reinforced Concrete by Using a Cohesive Crack-Based Inverse Analysis. Materials, 2022, 15, 71.	1.3	1
6	Measurement-While-Drilling Based Estimation of Dynamic Penetrometer Values Using Decision Trees and Random Forests. Applied Sciences (Switzerland), 2022, 12, 4565.	1.3	6
7	Challenges and Experiences of Online Evaluation in Courses of Civil Engineering during the Lockdown Learning Due to the COVID-19 Pandemic. Education Sciences, 2021, 11, 59.	1.4	44
8	Some Web-Based Experiences from Flipped Classroom Techniques in AEC Modules during the COVID-19 Lockdown. Education Sciences, 2021, 11, 211.	1.4	19
9	Achieving Ultra-High Performance Concrete by Using Packing Models in Combination with Nanoadditives. Nanomaterials, 2021, 11, 1414.	1.9	10
10	Use of BIM-FM to Transform Large Conventional Public Buildings into Efficient and Smart Sustainable Buildings. Energies, 2021, 14, 3127.	1.6	22
11	Influence of Natural Weather Conditions in the Long-Term Fracture Energy of Glass Fibre Reinforced Cement (GRC) Modified with Chemical Additions. Materials, 2021, 14, 3355.	1.3	1
12	Fracture and Size Effect of PFRC Specimens Simulated by Using a Trilinear Softening Diagram: A Predictive Approach. Materials, 2021, 14, 3795.	1.3	6
13	Shear slip post-cracking behaviour of polyolefin and steel fibre reinforced concrete. Construction and Building Materials, 2021, 290, 123187.	3.2	5
14	Influence of High Temperature on the Fracture Properties of Polyolefin Fibre Reinforced Concrete. Materials, 2021, 14, 601.	1.3	11
15	Flipped Learning in Engineering Modules Is More Than Watching Videos: The Development of Personal and Professional Skills. Sustainability, 2021, 13, 12290.	1.6	9
16	Assessment of the Shear Behaviour of Fibre Reinforced Concrete Through Numerical Modelling of Shear-Friction Theory. RILEM Bookseries, 2021, , 693-702.	0.2	0
17	Matrix Optimization of Ultra High Performance Concrete for Improving Strength and Durability. Materials, 2021, 14, 6944.	1.3	7
18	DIGITAL LEARNING, FLIPPED TEACHING AND THE DEVELOPMENT OF PERSONAL AND PROFESSIONAL SKILLS DURING THE SECOND YEAR OF COVID-19 PANDEMIC IN ENGINEERING MODULES. 2021		0

MARCOS G ALBERTI

#	Article	IF	CITATIONS
19	Assessment of the Post-Cracking Fatigue Behavior of Steel and Polyolefin Fiber-Reinforced Concrete. Materials, 2021, 14, 7087.	1.3	3
20	BIM-Based Methodology for the Management of Public Heritage. CASE Study: Algeciras Market Hall. Applied Sciences (Switzerland), 2021, 11, 11899.	1.3	13
21	Optimisation of fibre reinforcement with a combination strategy and through the use of self-compacting concrete. Construction and Building Materials, 2020, 235, 117289.	3.2	14
22	BIM-Based Educational and Facility Management of Large University Venues. Applied Sciences (Switzerland), 2020, 10, 7976.	1.3	20
23	New Methodological Approach towards a Complete Characterization of Structural Fiber Reinforced Concrete by Means of Mechanical Testing Procedures. Applied Sciences (Switzerland), 2020, 10, 4811.	1.3	2
24	Possibilities of BIM-FM for the Management of COVID in Public Buildings. Sustainability, 2020, 12, 9974.	1.6	27
25	New Perspectives for BIM Usage in Transportation Infrastructure Projects. Applied Sciences (Switzerland), 2020, 10, 7072.	1.3	30
26	Sustainability Analysis of the M-30 Madrid Tunnels and Madrid RÃo after 14 years of Service Life. Applied Sciences (Switzerland), 2020, 10, 7368.	1.3	4
27	Concrete for Precast Blocks: Binary and Ternary Combination of Sewage Sludge Ash with Diverse Mineral Residue. Materials, 2020, 13, 4634.	1.3	3
28	Microstructural Study of the Interface of Polyolefin Fibers Embedded in Self-Compacting Concrete Matrices with Bond Improver Admixture. Journal of Materials in Civil Engineering, 2020, 32, 04020015.	1.3	0
29	On the fracture behaviour of fibre-reinforced gypsum using micro and macro polymer fibres. Construction and Building Materials, 2020, 244, 118347.	3.2	21
30	ON STUDENT PERCEPTIONS ABOUT E-TEXTBOOKS AND DIGITAL RESOURCES FOR ONLINE TEACHING: LESSONS LEARNED FROM CONFINEMENT. , 2020, , .		1
31	THE SUDDEN SHIFT FROM FACE-TO-FACE TO ONLINE TEACHING: THE SOCIAL AND EDUCATIONAL ROLE OF LECTURERS DURING CONFINEMENT. , 2020, , .		1
32	Recent advances in structural fibre-reinforced concrete focused on polyolefin-based macro-synthetic fibres. Materiales De Construccion, 2020, 70, 206.	0.2	11
33	MODERATE-STRENGTH CONCRETE REINFORCED WITH POLYOLEFIN FIBRES: CONSIDERATIONS AND DESIGN OF A COMPETITIVE STRUCTURAL CONCRETE. Dyna (Spain), 2020, 95, 322-326.	0.1	3
34	Using Polyolefin Fibers with Moderate-Strength Concrete Matrix to Improve Ductility. Journal of Materials in Civil Engineering, 2019, 31, 04019170.	1.3	5
35	The Size Effect on Flexural Fracture of Polyolefin Fibre-Reinforced Concrete. Applied Sciences (Switzerland), 2019, 9, 1762.	1.3	10
36	The effect of fibres in the rheology of self-compacting concrete. Construction and Building Materials, 2019, 219, 144-153.	3.2	20

MARCOS G ALBERTI

#	Article	IF	CITATIONS
37	Influence of the Loading Speed on the Ductility Properties of Corroded Reinforcing Bars in Concrete. Materials, 2019, 12, 965.	1.3	2
38	Modelling fracture on polyolefin fibre reinforced concrete specimens subjected to mixed-mode loading. Engineering Fracture Mechanics, 2019, 211, 244-253.	2.0	15
39	Analysis of the Versatility of Multi-Linear Softening Functions Applied in the Simulation of Fracture Behaviour of Fibre-Reinforced Cementitious Materials. Materials, 2019, 12, 3656.	1.3	5
40	Influence of Fiber Distribution and Orientation in the Fracture Behavior of Polyolefin Fiber-Reinforced Concrete. Materials, 2019, 12, 220.	1.3	27
41	GAMIFICATION AND QUESTION-DRIVEN LEARNING AIDED WITH IMMEDIATE RESPONSE SYSTEMS. SOME EXPERIENCES FROM CIVIL ENGINEERING STUDENTS. , 2019, , .		2
42	EXPERIMENTAL ASSESSMENT OF THE TENSILE AND SHEAR STRENGTH BEHAVIOUR OF POLYOLEFIN FIBRE REINFORCED CONCRETE. Dyna (Spain), 2019, 94, 437-441.	0.1	0
43	EXPLORING SOME PROBLEM-BASED LEARNING APPROACHES WITH THE CLASSROOM RESPONSE SYSTEMS FOR UNDERGRADUATE ENGINEERING STUDENTS. , 2019, , .		0
44	SUPPORT TO SECONDARY EDUCATION AND DISSEMINATION CAMPAIGN OF ENGINEERING USING A SERVICE LEARNING METHODOLOGY. , 2019, , .		0
45	Uso de la metodologÃa BIM en la remodelación de un puente existente = Use of BIM methodology in the re-modelling of an existing bridge. Anales De Edificación, 2019, 5, 100.	0.1	4
46	Constitutive relationship of polyolefin fibre–reinforced concrete: Experimental and numerical approaches to tensile and flexural behaviour. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 358-373.	1.7	8
47	Can Polyolefin Fibre Reinforced Concrete Improve the Sustainability of a Flyover Bridge?. Sustainability, 2018, 10, 4583.	1.6	10
48	Polyolefin Fibres for the Reinforcement of Concrete. , 2018, , .		2
49	Use of Steel and Polyolefin Fibres in the La Canda Tunnels: Applying MIVES for Assessing Sustainability Evaluation. Sustainability, 2018, 10, 4765.	1.6	15
50	A review on the assessment and prediction of the orientation and distribution of fibres for concrete. Composites Part B: Engineering, 2018, 151, 274-290.	5.9	67
51	Assessment of the shear behaviour of polyolefin fibre reinforced concrete and verification by means of digital image correlation. Construction and Building Materials, 2018, 181, 565-578.	3.2	25
52	Assessment of the Shear Strength of Steel Fibre-Reinforced Concrete. , 2018, , 405-412.		0
53	ASSESSMENT OF SHEAR STRENGTH OF POLYOLEFIN AND STEEL FIBRE REINFORCED CONCRETE. Dyna (Spain), 2018, 93, 211-215.	0.1	0
54	CONSIDERATIONS ABOUT SCHOOL CURRICULUMS OF CIVIL ENGINEERING DEGREES IN ORDER TO IMPLEMENT BIM PROJECT METHODOLOGY. , 2018, , .		1

MARCOS G ALBERTI

#	Article	IF	CITATIONS
55	Numerical simulation of the fracture behaviour of glass fibre reinforced cement. Construction and Building Materials, 2017, 136, 108-117.	3.2	28
56	Fibre reinforced concrete with a combination of polyolefin and steel-hooked fibres. Composite Structures, 2017, 171, 317-325.	3.1	92
57	On the prediction of the orientation factor and fibre distribution of steel and macro-synthetic fibres for fibre-reinforced concrete. Cement and Concrete Composites, 2017, 77, 29-48.	4.6	77
58	Interface properties of polyolefin fibres embedded in self-compacting concrete with a bond improver admixture. Theoretical and Applied Fracture Mechanics, 2017, 90, 287-293.	2.1	11
59	Structural Cast-in-Place Application of Polyolefin Fiber–Reinforced Concrete in a Water Pipeline Supporting Elements. Journal of Pipeline Systems Engineering and Practice, 2017, 8, .	0.9	17
60	Numerical modelling of the fracture of polyolefin fibre reinforced concrete by using a cohesive fracture approach. Composites Part B: Engineering, 2017, 111, 200-210.	5.9	33
61	Application of trilinear softening functions based on a cohesive crack approach to the simulation of the fracture behaviour of fibre reinforced cementitious materials IOP Conference Series: Materials Science and Engineering, 2017, 246, 012029.	0.3	0
62	How to predict the orientation factor of non-rigid macro-synthetic fibre reinforced concrete. IOP Conference Series: Materials Science and Engineering, 2017, 246, 012030.	0.3	1
63	Fibre distribution and orientation of macro-synthetic polyolefin fibre reinforced concrete elements. Construction and Building Materials, 2016, 122, 505-517.	3.2	51
64	Reliability of polyolefin fibre reinforced concrete beyond laboratory sizes and construction procedures. Composite Structures, 2016, 140, 506-524.	3.1	42
65	Fracture mechanics of polyolefin fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fibre length and specimen size. Engineering Fracture Mechanics, 2016, 154, 225-244.	2.0	63
66	Pull-out behaviour and interface critical parameters of polyolefin fibres embedded in mortar and self-compacting concrete matrixes. Construction and Building Materials, 2016, 112, 607-622.	3.2	43
67	Improving the Reinforcement of Polyolefin Fiber Reinforced Concrete for Infrastructure Applications. Fibers, 2015, 3, 504-522.	1.8	25
68	Comparison between polyolefin fibre reinforced vibrated conventional concrete and self-compacting concrete. Construction and Building Materials, 2015, 85, 182-194.	3.2	67
69	On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete. Construction and Building Materials, 2014, 55, 274-288.	3.2	140
70	Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions. Materials & Design, 2014, 60, 57-65.	5.1	76
71	UN MODELO PARA APRENDIZAJE AUTÓNOMO DE PROBLEMAS ELUSIVOS DE CÃŁCULO DE ESTRUCTURAS MEDIANTE TÉCNICAS WEB. , 0, , 76-87.		0
72	Combinación de fibras de acero de última generación para el refuerzo de hormigón autocompactante. , 0, , .		0

#	Article	IF	CITATIONS
73	Simulation of mixed-mode fracture (I-II) on PFRC specimens with various fibre proportions using an embedded cohesive crack model. IOP Conference Series: Materials Science and Engineering, 0, 596, 012007.	0.3	0
74	Statistical analysis of an experimental database on residual flexural strengths of fiber reinforced concretes: <scp>Performanceâ€based</scp> equations. Structural Concrete, 0, , .	1.5	2