Taranjit Singh Rai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5877892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immuno-informatics analysis predicts B and T cell consensus epitopes for designing peptide vaccine against SARS-CoV-2 with 99.82% global population coverage. Briefings in Bioinformatics, 2022, 23, .	3.2	5
2	The role of senescence in the pathogenesis of atrial fibrillation: A target process for health improvement and drug development. Ageing Research Reviews, 2021, 69, 101363.	5.0	10
3	The Interdependency and Co-Regulation of the Vitamin D and Cholesterol Metabolism. Cells, 2021, 10, 2007.	1.8	24
4	Role of Senescence and Aging in SARS-CoV-2 Infection and COVID-19 Disease. Cells, 2021, 10, 3367.	1.8	42
5	The histone chaperone HIRA promotes the induction of host innate immune defences in response to HSV-1 infection. PLoS Pathogens, 2019, 15, e1007667.	2.1	47
6	Cellular senescence in osteoarthritis pathology. Aging Cell, 2017, 16, 210-218.	3.0	243
7	Histone chaperone HIRA deposits histone H3.3 onto foreign viral DNA and contributes to anti-viral intrinsic immunity. Nucleic Acids Research, 2017, 45, 11673-11683.	6.5	44
8	Oncogene-Expressing Senescent Melanocytes Up-Regulate MHC Class II, aÂCandidate Melanoma Suppressor Function. Journal of Investigative Dermatology, 2017, 137, 2197-2207.	0.3	30
9	Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability. Genome Biology, 2016, 17, 158.	3.8	65
10	ChIP-Sequencing to Map the Epigenome of Senescent Cells Using Benzonase Endonuclease. Methods in Enzymology, 2016, 574, 355-364.	0.4	6
11	MLL1 is essential for the senescence-associated secretory phenotype. Genes and Development, 2016, 30, 321-336.	2.7	121
12	Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex. Nature Communications, 2015, 6, 7711.	5.8	99
13	HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia. Genes and Development, 2014, 28, 2712-2725.	2.7	128
14	Placing the HIRA Histone Chaperone Complex in the Chromatin Landscape. Cell Reports, 2013, 3, 1012-1019.	2.9	116
15	Senescent cells harbour features of the cancer epigenome. Nature Cell Biology, 2013, 15, 1495-1506.	4.6	300
16	p53 status determines the role of autophagy in pancreatic tumour development. Nature, 2013, 504, 296-300.	13.7	614
17	Lysosome-mediated processing of chromatin in senescence. Journal of Cell Biology, 2013, 202, 129-143.	2.3	413
18	Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes and Development, 2013, 27, 1787-1799.	2.7	440

TARANJIT SINGH RAI

#	ARTICLE	IF	CITATIONS
19	Sprouty2, PTEN, and PP2A interact to regulate prostate cancer progression. Journal of Clinical Investigation, 2013, 123, 1157-1175.	3.9	75
20	Lessons from senescence: Chromatin maintenance in non-proliferating cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 322-331.	0.9	60
21	Identification of an Ubinuclein 1 Region Required for Stability and Function of the Human HIRA/UBN1/CABIN1/ASF1a Histone H3.3 Chaperone Complex. Biochemistry, 2012, 51, 2366-2377.	1.2	26
22	Human CABIN1 Is a Functional Member of the Human HIRA/UBN1/ASF1a Histone H3.3 Chaperone Complex. Molecular and Cellular Biology, 2011, 31, 4107-4118.	1.1	87
23	Decreased Myocardial Expression of Dystrophin and Titin mRNA and Protein in Dilated Cardiomyopathy: Possibly an Adverse Effect of TNF-α. Journal of Clinical Immunology, 2010, 30, 520-530.	2.0	7
24	Common Variants of Inflammatory Cytokine Genes Are Associated with Risk of Nephropathy in Type 2 Diabetes among Asian Indians. PLoS ONE, 2009, 4, e5168.	1.1	65
25	<i>ACE</i> Variants Interact with the RAS Pathway to Confer Risk and Protection against Type 2 Diabetic Nephropathy. DNA and Cell Biology, 2009, 28, 141-150.	0.9	61
26	Genotype phenotype correlations of cardiac beta-myosin heavy chain mutations in Indian patients with hypertrophic and dilated cardiomyopathy. Molecular and Cellular Biochemistry, 2009, 321, 189-196.	1.4	22
27	Circulating proinflammatory cytokines and N-terminal pro-brain natriuretic peptide significantly decrease with recovery of left ventricular function in patients with dilated cardiomyopathy. Molecular and Cellular Biochemistry, 2009, 324, 139-145.	1.4	11
28	Genetic and clinical profile of Indian patients of idiopathic restrictive cardiomyopathy with and without hypertrophy. Molecular and Cellular Biochemistry, 2009, 331, 187-192.	1.4	23
29	A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nature Genetics, 2009, 41, 187-191.	9.4	245
30	ACE I/D polymorphism in Indian patients with hypertrophic cardiomyopathy and dilated cardiomyopathy. Molecular and Cellular Biochemistry, 2008, 311, 67-72.	1.4	25
31	Synergistic effect between apolipoprotein E and apolipoprotein A1 gene polymorphisms in the risk for coronary artery disease. Molecular and Cellular Biochemistry, 2008, 313, 139-146.	1.4	22
32	Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians. Molecular and Cellular Biochemistry, 2008, 314, 9-17.	1.4	70