Ratana Rujiravanit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/587783/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers, 2008, 72, 43-51.	5.1	866
2	Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresource Technology, 2008, 99, 1589-1595.	4.8	238
3	Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydrate Polymers, 2005, 62, 130-136.	5.1	199
4	Preparation and characterization of jute- and flax-reinforced starch-based composite foams. Carbohydrate Polymers, 2004, 58, 53-63.	5.1	172
5	Preparation and characterization of polyaniline/chitosan blend film. Carbohydrate Polymers, 2006, 64, 560-568.	5.1	144
6	Preparation and characterization of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite films with or without heat treatment. Polymer, 2005, 46, 5637-5644.	1.8	142
7	Preparation of Chitosan-Coated Polyethylene Packaging Films by DBD Plasma Treatment. ACS Applied Materials & Interfaces, 2012, 4, 2474-2482.	4.0	139
8	Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant-enhanced oil recovery. Biochemical Engineering Journal, 2008, 42, 172-179.	1.8	134
9	Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning. Nanotechnology, 2006, 17, 4519-4528.	1.3	121
10	Fabrication, structure, and properties of chitin whiskerâ€reinforced alginate nanocomposite fibers. Journal of Applied Polymer Science, 2008, 110, 890-899.	1.3	116
11	Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydrate Polymers, 2016, 148, 335-344.	5.1	108
12	Preparation and characterization of chitin whisker-reinforced silk fibroin nanocomposite sponges. European Polymer Journal, 2007, 43, 4123-4135.	2.6	101
13	Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fractionation. Bioresource Technology, 2010, 101, 324-330.	4.8	98
14	Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose, 2013, 20, 1275-1292.	2.4	97
15	Electrospinning of hexanoyl chitosan. Carbohydrate Polymers, 2006, 66, 298-305.	5.1	95
16	Wet-spun alginate/chitosan whiskers nanocomposite fibers: Preparation, characterization and release characteristic of the whiskers. Carbohydrate Polymers, 2010, 79, 738-746.	5.1	88
17	Preparation of Crosslinked Chitosan/Silk Fibroin Blend Films for Drug Delivery System. Macromolecular Bioscience, 2003, 3, 604-611.	2.1	87
18	Preparation and characterization of hexanoyl chitosan/polylactide blend films. Carbohydrate Polymers, 2005, 60, 343-350.	5.1	85

#	Article	IF	CITATIONS
19	Solution properties and vesicle formation of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa SP4. Colloids and Surfaces B: Biointerfaces, 2009, 72, 6-15.	2.5	84
20	Electrically controlled release of sulfosalicylic acid from crosslinked poly(vinyl alcohol) hydrogel. International Journal of Pharmaceutics, 2008, 356, 1-11.	2.6	83
21	Preparation and Characterization of Microwave-treated Carboxymethyl Chitin and Carboxymethyl Chitosan Films for Potential Use in Wound Care Application. Macromolecular Bioscience, 2005, 5, 1001-1012.	2.1	78
22	Electrospinning of hexanoyl chitosan/polylactide blends. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 547-565.	1.9	75
23	Preparation and characterization of ZnO-deposited DBD plasma-treated PP packaging film with antibacterial activities. Applied Surface Science, 2013, 273, 824-835.	3.1	74
24	Preparation and characterization of starch/poly(l-lactic acid) hybrid foams. Carbohydrate Polymers, 2005, 59, 329-337.	5.1	71
25	Synthesis of magnetic nanoparticle into bacterial cellulose matrix by ammonia gas-enhancing in situ co-precipitation method. Carbohydrate Polymers, 2011, 86, 162-170.	5.1	64
26	Novel Chitosan-Spotted Alginate Fibers from Wet-Spinning of Alginate Solutions Containing Emulsified Chitosanâ^'Citrate Complex and their Characterization. Biomacromolecules, 2009, 10, 320-327.	2.6	63
27	Biosurfactant production by Pseudomonas aeruginosa SP4 using sequencing batch reactors: Effect of oil-to-glucose ratio. Biochemical Engineering Journal, 2010, 49, 185-191.	1.8	61
28	Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Colloids and Surfaces B: Biointerfaces, 2008, 65, 106-112.	2.5	60
29	Cytotoxicity against cancer cells of chitosan oligosaccharides prepared from chitosan powder degraded by electrical discharge plasma. Carbohydrate Polymers, 2018, 201, 20-30.	5.1	58
30	Xâ€ray diffraction and dynamic mechanical analyses of αâ€chitin whiskerâ€reinforced poly(vinyl alcohol) nanocomposite nanofibers. Polymer International, 2010, 59, 85-91.	1.6	57
31	Characterisation of beta-chitin/poly(vinyl alcohol) blend films. Polymer Testing, 2003, 22, 381-387.	2.3	56
32	In vitro biocompatibility of electrospun hexanoyl chitosan fibrous scaffolds towards human keratinocytes and fibroblasts. European Polymer Journal, 2008, 44, 2060-2067.	2.6	52
33	Fabrication of cellulose nanofiber/chitin whisker/silk sericin bionanocomposite sponges and characterizations of their physical and biological properties. Composites Science and Technology, 2014, 96, 88-96.	3.8	48
34	Removal of trace Cd2+ using continuous multistage ion foam fractionation: Part l—The effect of feed SDS/Cd molar ratio. Journal of Hazardous Materials, 2010, 182, 812-819.	6.5	44
35	Enhanced degradation of chitosan by applying plasma treatment in combination with oxidizing agents for potential use as an anticancer agent. Carbohydrate Polymers, 2017, 167, 1-11.	5.1	44
36	Characterization of starch/poly(ε-caprolactone) hybrid foams. Polymer Testing, 2004, 23, 651-657.	2.3	43

#	Article	IF	CITATIONS
37	Electrical conductivity and mechanical properties of polyaniline/natural rubber composite fibers. Journal of Applied Polymer Science, 2007, 106, 4038-4046.	1.3	42
38	Preparation of chitosan filament applying new coagulation system. Carbohydrate Polymers, 2004, 56, 205-211.	5.1	40
39	In vitro biocompatibility evaluations of hexanoyl chitosan film. Carbohydrate Polymers, 2007, 68, 166-172.	5.1	40
40	Phase behavior of ternary mannosylerythritol lipid/water/oil systems. Colloids and Surfaces B: Biointerfaces, 2009, 68, 207-212.	2.5	37
41	In Vitro and In Vivo Release of Basic Fibroblast Growth Factor Using a Silk Fibroin Scaffold as Delivery Carrier. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1403-1419.	1.9	36
42	Biosurfactant production by Pseudomonas aeruginosa SP4 using sequencing batch reactors: Effects of oil loading rate and cycle time. Bioresource Technology, 2009, 100, 812-818.	4.8	35
43	Surface Characterization and Antimicrobial Activity of Chitosan-Deposited DBD Plasma-Modified Woven PET Surface. Plasma Chemistry and Plasma Processing, 2011, 31, 233-249.	1.1	35
44	Depolymerization of chitosan–metal complexes via a solution plasma technique. Carbohydrate Polymers, 2014, 102, 504-512.	5.1	34
45	Synthesis of polyaniline nanofibrils using an in situ seeding technique. Synthetic Metals, 2008, 158, 695-703.	2.1	33
46	Photocatalytic disinfection of water by bacterial cellulose/N–F co-doped TiO2 under fluorescent light. Cellulose, 2015, 22, 3321-3335.	2.4	33
47	Porous polyethylene membranes by template-leaching technique: preparation and characterization. Polymer Testing, 2004, 23, 91-99.	2.3	32
48	Effect of gamma radiation on dilute aqueous solutions and thin films of N-succinyl chitosan. Polymer Degradation and Stability, 2010, 95, 234-244.	2.7	30
49	Miscibility and Biodegradability of Silk Fibroin/Carboxymethyl Chitin Blend Films. Macromolecular Bioscience, 2007, 7, 1258-1271.	2.1	29
50	Characterization and encapsulation efficiency of rhamnolipid vesicles with cholesterol addition. Journal of Bioscience and Bioengineering, 2011, 112, 102-106.	1.1	29
51	Silver Loading on DBD Plasma-Modified Woven PET Surface for Antimicrobial Property Improvement. Plasma Chemistry and Plasma Processing, 2010, 30, 191-206.	1.1	28
52	Release characteristic and stability of curcumin incorporated in Î ² -chitin non-woven fibrous sheet using Tween 20 as an emulsifier. European Polymer Journal, 2012, 48, 512-523.	2.6	27
53	Chitosan whiskers from shrimp shells incorporated into dimethacrylate-based dental resin sealant. Dental Materials Journal, 2012, 31, 273-279.	0.8	26
54	Rhamnolipid Biosurfactants: Production and their Potential in Environmental Biotechnology. Advances in Experimental Medicine and Biology, 2010, 672, 211-221.	0.8	25

#	Article	IF	CITATIONS
55	Formation of W/O Microemulsion Based on Natural Glycolipid Biosurfactant, Mannosylerythritol Lipid-A. Journal of Oleo Science, 2008, 57, 55-59.	0.6	24
56	Synthesis of polyaniline nanofibers and nanotubes via rhamnolipid biosurfactant templating. Synthetic Metals, 2011, 161, 298-306.	2.1	24
57	Preparation and Properties of Starch/Poly(vinyl alcohol) Composite Foams. Macromolecular Symposia, 2004, 216, 217-228.	0.4	23
58	Electrical conductivity responses and interactions of poly(3-thiopheneacetic acid)/zeolites L, mordenite, beta and H2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 140, 23-30.	1.7	23
59	Effect of casting solvent on characteristics of hexanoyl chitosan/polylactide blend films. Journal of Applied Polymer Science, 2007, 105, 1844-1852.	1.3	17
60	Polyaniline nanoparticles with controlled sizes using a cross-linked carboxymethyl chitin template. Journal of Nanoparticle Research, 2009, 11, 1167-1177.	0.8	16
61	Dendritic polyaniline nanoparticles synthesized by carboxymethyl chitin templating. European Polymer Journal, 2008, 44, 3423-3429.	2.6	15
62	Sericin-binded-deprotenized natural rubber film containing chitin whiskers as elasto-gel dressing. International Journal of Biological Macromolecules, 2017, 101, 417-426.	3.6	15
63	Preparation and Characterization of Chitosan-Coated DBD Plasma-Treated Natural Rubber Latex Medical Surgical Gloves with Antibacterial Activities. Plasma Chemistry and Plasma Processing, 2012, 32, 1275-1292.	1.1	14
64	Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products. Japanese Journal of Applied Physics, 2018, 57, 0102B5.	0.8	14
65	Effect of electrical discharge plasma on cytotoxicity against cancer cells of N,O-carboxymethyl chitosan-stabilized gold nanoparticles. Carbohydrate Polymers, 2020, 237, 116162.	5.1	12
66	In vitro cytotoxicity of carbon black nanoparticles synthesized from solution plasma on human lung fibroblast cells. Japanese Journal of Applied Physics, 2018, 57, 0102BG.	0.8	10
67	Removal of Trace Cd2+Using Continuous Multistage Ion Foam Fractionation: Part Il—The Effects of Operational Parameters. Separation Science and Technology, 2011, 46, 1673-1683.	1.3	9
68	Dilute solution properties of hexanoyl chitosan in chloroform, dichloromethane, and tetrahydrofuran. Carbohydrate Polymers, 2006, 64, 175-183.	5.1	8
69	Removal of trace Cd2+ using continuous multistage ion foam fractionation. Part Ill—Effect of salt addition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385, 171-180.	2.3	8
70	Simultaneous deacetylation and degradation of chitin hydrogel by electrical discharge plasma using low sodium hydroxide concentrations. Carbohydrate Polymers, 2020, 228, 115377.	5.1	7
71	Preparation and Physico-Chemical Characteristics of N-Maleoyl Chitosan Films. Macromolecular Symposia, 2008, 264, 121-126.	0.4	6
72	Physical and Electrical Properties of Chlorophyllin/Carboxymethyl Chitin and Chlorophyllin/Carboxymethyl Chitosan Blend Films. Macromolecular Symposia, 2008, 264, 168-175.	0.4	5

#	Article	IF	CITATIONS
73	Fabrication and properties of solutionâ€cast polyaniline/carboxymethylchitin blend films. Journal of Applied Polymer Science, 2010, 116, 1626-1634.	1.3	3
74	Photooxidative mineralization of microorganisms-produced glycolipid biosurfactants by a titania-mediated advanced oxidation process. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 209, 147-152.	2.0	3
75	Anomalous rheology of polypyrrole nanoparticle/alginate suspensions: effect of solids volume fraction, particle size, and electronic state. Rheologica Acta, 2011, 50, 809-823.	1.1	3
76	Plasma-Assisted Synthesis of Multicomponent Nanoparticles Containing Carbon, Tungsten Carbide and Silver as Multifunctional Filler for Polylactic Acid Composite Films. Polymers, 2021, 13, 991.	2.0	3
77	Combinatorial Effects of Charge Characteristics and Hydrophobicity of Silk Fibroin on the Sorption and Release of Charged Dyes. Journal of Biomaterials Science, Polymer Edition, 2012, ahead-of-print, 1-17.	1.9	2
78	Deposition of carbon–tungsten carbide on coir pulp to improve its compatibility with polylactic acid. Cellulose, 2021, 28, 4119-4136.	2.4	1