Bojana Obradovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5877552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. Journal of Orthopaedic Research, 1999, 17, 130-138.	1.2	664
2	Dynamic Cell Seeding of Polymer Scaffolds for Cartilage Tissue Engineering. Biotechnology Progress, 1998, 14, 193-202.	1.3	490
3	Integration of engineered cartilage. Journal of Orthopaedic Research, 2001, 19, 1089-1097.	1.2	214
4	Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. , 1999, 63, 197-205.		202
5	Method for Quantitative Analysis of Glycosaminoglycan Distribution in Cultured Natural and Engineered Cartilage. Annals of Biomedical Engineering, 1999, 27, 656-662.	1.3	151
6	Electrostatic generation of alginate microbeads loaded with brewing yeast. Process Biochemistry, 2001, 37, 17-22.	1.8	86
7	Alginate-immobilized lipase by electrostatic extrusion for the purpose of palm oil hydrolysis in lecithin/isooctane system. Process Biochemistry, 2002, 38, 313-318.	1.8	75
8	A comprehensive approach to in vitro functional evaluation of Ag/alginate nanocomposite hydrogels. Carbohydrate Polymers, 2014, 111, 305-314.	5.1	67
9	Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiation Physics and Chemistry, 2011, 80, 1208-1215.	1.4	61
10	Immobilization of yeast cells in PVA particles for beer fermentation. Process Biochemistry, 2007, 42, 1348-1351.	1.8	60
11	Alginate hydrogel microbeads incorporated with Ag nanoparticles obtained by electrochemical method. Materials Chemistry and Physics, 2012, 133, 182-189.	2.0	50
12	Comparative in vivo evaluation of novel formulations based on alginate and silver nanoparticles for wound treatments. Journal of Biomaterials Applications, 2018, 32, 1197-1211.	1.2	49
13	Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles. Journal of Materials Science: Materials in Medicine, 2012, 23, 99-107.	1.7	47
14	Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release. Sensors, 2008, 8, 1488-1496.	2.1	46
15	Novel kinetic model of the removal of divalent heavy metal ions from aqueous solutions by natural clinoptilolite. Journal of Hazardous Materials, 2012, 233-234, 57-64.	6.5	45
16	Evaluation of alginate hydrogels under inÂvivo–like bioreactor conditions for cartilage tissue engineering. Journal of Materials Science: Materials in Medicine, 2010, 21, 2869-2879.	1.7	40
17	Immobilization of cells by electrostatic droplet generation: a model system for potential application in medicine. International Journal of Nanomedicine, 2006, 1, 163-171.	3.3	36
18	Cardiac tissue engineering: effects of bioreactor flow environment on tissue constructs. Journal of Chemical Technology and Biotechnology, 2006, 81, 485-490.	1.6	35

BOJANA OBRADOVIC

#	Article	IF	CITATIONS
19	Achieving high antimicrobial activity: Composite alginate hydrogel beads releasing activated charcoal with an immobilized active agent. Carbohydrate Polymers, 2018, 196, 279-288.	5.1	29
20	Bioreactor validation and biocompatibility of Ag/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposites. Colloids and Surfaces B: Biointerfaces, 2013, 105, 230-235.	2.5	26
21	Investigations of cell immobilization in alginate: rheological and electrostatic extrusion studies. Journal of Chemical Technology and Biotechnology, 2006, 81, 505-510.	1.6	24
22	A validated model of GAG deposition, cell distribution, and growth of tissue engineered cartilage cultured in a rotating bioreactor. Biotechnology and Bioengineering, 2010, 105, 842-853.	1.7	24
23	Hydrodynamics and mass transfer in a four-phase external loop air lift bioreactor. Biotechnology Progress, 1995, 11, 420-428.	1.3	23
24	Guidelines for general adsorption kinetics modeling. Hemijska Industrija, 2020, 74, 65-70.	0.3	23
25	Operating regime of a biphasic oil/aqueous hollow-fibre reactor with immobilized lipase for oil hydrolysis. Process Biochemistry, 2004, 39, 1377-1385.	1.8	20
26	Beer Production Using Immobilised Cells. Focus on Biotechnology, 2005, , 259-273.	0.4	20
27	Controlled production of alginate nanocomposites with incorporated silver nanoparticles aimed for biomedical applications. Journal of the Serbian Chemical Society, 2012, 77, 1709-1722.	0.4	20
28	Multifunctional ternary composite films based on PLA and Ag/alginate microbeads: Physical characterization and silver release kinetics. Materials Science and Engineering C, 2019, 98, 1159-1168.	3.8	20
29	A novel bioreactor with mechanical stimulation for skeletal tissue engineering. Chemical Industry and Chemical Engineering Quarterly, 2009, 15, 41-44.	0.4	20
30	Flow regimes and liquid mixing in a draft tube gas-liquid-solid fluidized bed. Chemical Engineering Science, 1992, 47, 3451-3458.	1.9	19
31	Silver release from nanocomposite Ag/alginate hydrogels in the presence of chloride ions: experimental results and mathematical modeling. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	17
32	Novel nano-composite hydrogels with honey effective against multi-resistant clinical strains of Acinetobacter baumannii and Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2019, 103, 8529-8543.	1.7	17
33	Evaluation of Nisin and LL-37 Antimicrobial Peptides as Tool to Preserve Articular Cartilage Healing in a Septic Environment. Frontiers in Bioengineering and Biotechnology, 2020, 8, 561.	2.0	17
34	Silver/poly(<i>N</i> -vinyl-2-pyrrolidone) hydrogel nanocomposites obtained by electrochemical synthesis of silver nanoparticles inside the polymer hydrogel aimed for biomedical applications. Polymer Composites, 2014, 35, 217-226.	2.3	15
35	Removal of Cu(II) from aqueous solutions by using fluidized zeolite A beads: Hydrodynamic and sorption studies. Chemical Engineering Science, 2014, 117, 85-92.	1.9	15
36	Development and Validation of a Long-Term 3D Glioblastoma Cell Culture in Alginate Microfibers as a Novel Bio-Mimicking Model System for Preclinical Drug Testing. Brain Sciences, 2021, 11, 1025.	1.1	14

BOJANA OBRADOVIC

#	Article	IF	CITATIONS
37	Local and Overall Mixing Characteristics of the Gas-Liquid-Solid Air Lift Reactor. Industrial & Engineering Chemistry Research, 1994, 33, 698-702.	1.8	13
38	Hydrolysis of Penicillin G by Penicillin G Acylase Immobilized on Chitosan Microbeads in Different Reactor Systems. Chemical Engineering and Technology, 2011, 34, 1706-1714.	0.9	13
39	Bioreactors with hydrostatic pressures imitating physiological environments in intervertebral discs. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 529-545.	1.3	13
40	Immobilization of Cells and Enzymes Using Electrostatic Droplet Generation. Focus on Biotechnology, 2004, , 277-294.	0.4	12
41	Removal of manganese in batch and fluidized bed systems using beads of zeolite a as adsorbent. Microporous and Mesoporous Materials, 2016, 226, 378-385.	2.2	11
42	Preclinical functional characterization methods of nanocomposite hydrogels containing silver nanoparticles for biomedical applications. Applied Microbiology and Biotechnology, 2020, 104, 4643-4658.	1.7	11
43	Biomimetic characterization reveals enhancement of hydroxyapatite formation by fluid flow in gellan gum and bioactive glass composite scaffolds. Polymer Testing, 2019, 76, 464-472.	2.3	9
44	Immobilized Yeast Bioreactor Systems for Brewing—Recent Achievements. , 2001, , 277-292.		6
45	Transport of silver nanoparticles from nanocomposite Ag/alginate hydrogels under conditions mimicking tissue implantation. Hemijska Industrija, 2017, 71, 383-394.	0.3	6
46	Controlled swelling and degradation studies of alginate microbeads in dilute natrium-citrate solutions. Hemijska Industrija, 2010, 64, 253-263.	0.3	5
47	Validation of a novel perfusion bioreactor system in cancer research. Hemijska Industrija, 2020, 74, 187-196.	0.3	5
48	Activated sludge-loaded polyvinyl alcohol microparticles for starch wastewater treatment in an airlift bioreactor. Korean Journal of Chemical Engineering, 2018, 35, 324-327.	1.2	4
49	Analysis of the hydrodynamic parameters of external loop air lift bioreactors. Hemijska Industrija, 2004, 58, 10-18.	0.3	4
50	Novel composite zinc-alginate hydrogels with activated charcoal aimed for potential applications in multifunctional primary wound dressings. Hemijska Industrija, 2019, 73, 37-46.	0.3	4
51	Effects of poly(vinyl alcohol) blending with Ag/alginate solutions to form nanocomposite fibres for potential use as antibacterial wound dressings. Royal Society Open Science, 2022, 9, 211517.	1.1	4
52	Tissue Engineering of Cartilage and Myocardium. , 2005, , 99-133.		3
53	FUNCTIONAL BIOREACTOR CHARACTERIZATION TO ASSESS POTENTIALS OF NANOCOMPOSITES BASED ON DIFFERENT ALGINATE TYPES AND SILVER NANOPARTICLES FOR USE AS CARTILAGE TISSUE IMPLANTS. Journal of Biomedical Materials Research - Part A, 2018, 107, 755-768.	2.1	3
54	Novel composite scaffolds based on alginate and Mgâ€doped calcium phosphate fillers: Enhanced hydroxyapatite formation under biomimetic conditions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 2079-2090.	1.6	3

BOJANA OBRADOVIC

#	Article	IF	CITATIONS
55	Interdisciplinary crossover for rapid advancements - collaboration between medical and engineering scientists with the focus on Serbia. Srpski Arhiv Za Celokupno Lekarstvo, 2021, 149, 229-235.	0.1	3
56	Functional Tissue Engineering of Cartilage and Myocardium. , 2005, , 501-530.		2
57	Cytotoxicity studies of Ag/alginate nanocomposite hydrogels in 2D and 3D cultures. , 2015, , .		2
58	Dissolution of copper mineral phases in biological fluids and the controlled release of copper ions from mineralized alginate hydrogels. Biomedical Materials (Bristol), 2015, 10, 015006.	1.7	2
59	Chemical engineering methods in analyses of 3D cancer cell cultures: Hydrodinamic and mass transport considerations. Chemical Industry and Chemical Engineering Quarterly, 2022, 28, 211-223.	0.4	2
60	Back to basics: Avoiding errors in scientific research and publications. Hemijska Industrija, 2019, 73, 143-146.	0.3	2
61	Examination of rheological properties of fine particles as carriers for controlled drug release. Chemical Engineering Communications, 2003, 190, 83-93.	1.5	1
62	In vitro evaluation of the controlled release of antibiotics from liposomes. Hemijska Industrija, 2003, 57, 589-595.	0.3	1
63	Effects of cell addition on immobilization by electrostatic droplet generation. Chemical Industry and Chemical Engineering Quarterly, 2005, 11, 79-84.	0.4	Ο
64	Biomimetic Approaches to Design of Tissue Engineering Bioreactors. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 115-129.	0.5	0
65	Approaches to Mathematical Modeling of Tissue Engineering Systems. , 2012, , 228-250.		Ο
66	Connecting science and industry with improved communication of research results. Hemijska Industrija, 2019, 73, 73-77.	0.3	0
67	Innovation competitions - means to generate valuable ideas, advance products and technologies, and enhance entrepreneurial skills. Hemijska Industrija, 2019, 73, 209-212.	0.3	0
68	Fighting fake science: The key role of scientists. Hemijska Industrija, 2020, 74, 231-236.	0.3	0