Shelley Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5877178/publications.pdf

Version: 2024-02-01

430874 434195 32 1,035 18 31 citations h-index g-index papers 32 32 32 1530 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Advances in targeting the WNT/ \hat{l}^2 -catenin signaling pathway in cancer. Drug Discovery Today, 2022, 27, 82-101.	6.4	44
2	Chitosan-gold nanoparticles trigger apoptosis in human breast cancer cells in vitro. Nucleus (India), 2021, 64, 79-92.	2.2	6
3	Bacopasaponins with cytotoxic activity against human breast cancer cells in vitro. Molecular Biology Reports, 2021, 48, 2497-2505.	2.3	2
4	Endocrine Disruptors in Freshwater: Impact on Teleost Reproduction. Proceedings of the Zoological Society, 2021, 74, 369-377.	1.0	4
5	Cytotoxic effect of green synthesized silver nanoparticles in MCF7 and MDA-MB-231 human breast cancer cells in vitro. Nucleus (India), 2020, 63, 191-202.	2.2	23
6	Cytotoxic effect of graphene oxide-functionalized gold nanoparticles in human breast cancer cell lines. Nucleus (India), 2019, 62, 243-250.	2.2	11
7	Vector-free in vivo trans-determination of adult hepatic stem cells to insulin-producing cells. Molecular Biology Reports, 2019, 46, 5501-5509.	2.3	2
8	Silver Nanoparticles as Antibacterial and Anticancer Materials Against Human Breast, Cervical and Oral Cancer Cells. Journal of Nanoscience and Nanotechnology, 2017, 17, 968-976.	0.9	31
9	Differential modulation of cellular antioxidant status in zebrafish liver and kidney exposed to low dose arsenic trioxide. Ecotoxicology and Environmental Safety, 2017, 135, 173-182.	6.0	41
10	Mentha arvensis (Linn.)-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells. Breast Cancer: Targets and Therapy, 2017, Volume 9, 265-278.	1.8	38
11	The Role of mTOR, Autophagy, Apoptosis, and Oxidative Stress During Toxic Metal Injury. , 2016, , 69-81.		1
12	Purification and Characterization of Extracellular Protease and Amylase Produced by the Bacterial Strain, Corynebacterium alkanolyticum ATH3 Isolated from Fish Gut. Arabian Journal for Science and Engineering, 2016, 41, 9-16.	1.1	21
13	Differential <i>in vivo </i> genotoxicity of arsenic trioxide in glutathione depleted mouse bone marrow cells: expressions of Nrf2/Keap1/P62. Toxicology Mechanisms and Methods, 2015, 25, 223-228.	2.7	8
14	Low concentration of mercury induces autophagic cell death in rat hepatocytes. Toxicology and Industrial Health, 2014, 30, 611-620.	1.4	23
15	Arsenic trioxide induced indirect and direct inhibition of glutathione reductase leads to apoptosis in rat hepatocytes. BioMetals, 2014, 27, 483-494.	4.1	12
16	Toxic Metals and Autophagy. Chemical Research in Toxicology, 2014, 27, 1887-1900.	3.3	97
17	Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: Expression of antioxidant genes. Ecotoxicology and Environmental Safety, 2014, 107, 1-8.	6.0	131
18	Low concentration of HgCl2drives rat hepatocytes to autophagy/apoptosis/necroptosis in a time-dependent manner. Toxicological and Environmental Chemistry, 2013, 95, 1192-1207.	1.2	6

#	Article	IF	CITATIONS
19	Interplay of Loss of ERK Dependence and Amplification of Apoptotic Signals in Arsenic Treated Rat Hepatocytes. The National Academy of Sciences, India, 2013, 36, 599-602.	1.3	3
20	Regulation of autophagy in rat hepatocytes treated <i>in vitro </i> ivith low concentration of mercury. Toxicological and Environmental Chemistry, 2013, 95, 504-504.	1.2	7
21	Mercuric chloride effects on adult rat oval cells-induced apoptosis. Toxicological and Environmental Chemistry, 2013, 95, 1722-1738.	1.2	2
22	<i>In Vivo</i> Effect of Arsenic Trioxide on Keap1-p62-Nrf2 Signaling Pathway in Mouse Liver: Expression of Antioxidant Responsive Element-Driven Genes Related to Glutathione Metabolism. ISRN Hepatology, 2013, 2013, 1-13.	0.9	18
23	Low concentration of arsenic could induce caspase-3 mediated head kidney macrophage apoptosis with JNK–p38 activation in Clarias batrachus. Toxicology and Applied Pharmacology, 2009, 241, 329-338.	2.8	32
24	Arsenic trioxide and lead acetate induce apoptosis in adult rat hepatic stem cells. Cell Biology and Toxicology, 2009, 25, 403-413.	5.3	34
25	Antioxidant responses of the earthworm Lampito mauritii exposed to Pb and Zn contaminated soil. Environmental Pollution, 2008, 151, 1-7.	7.5	83
26	Induction of oxidative stress by arsenic in Clarias batrachus: Involvement of peroxisomes. Ecotoxicology and Environmental Safety, 2007, 66, 178-187.	6.0	96
27	Arsenic-induced histopathology and synthesis of stress proteins in liver and kidney of Channa punctatus. Ecotoxicology and Environmental Safety, 2006, 65, 218-229.	6.0	130
28	Inorganic mercury binding to fish oocyte plasma membrane induces steroidogenesis and translatable messenger RNA synthesis. BioMetals, 1997, 10, 285-290.	4.1	29
29	Specific binding of inorganic mercury to Na(+)-K(+)-ATPase in rat liver plasma membrane and signal transduction. BioMetals, 1997, 10, 157-162.	4.1	22
30	Non lethal concentrations of pesticide impair ovarian function in the freshwater perch, Anabas testudineus. Environmental Biology of Fishes, 1993, 36, 319-324.	1.0	16
31	Target and non-target effects of anticholinesterase pesticides in fish. Science of the Total Environment, 1993, 134, 859-866.	8.0	29
32	Ovarian damage to Channa punctatus after chronic exposure to low concentrations of elsan, mercury, and ammonia. Ecotoxicology and Environmental Safety, 1989, 17, 247-257.	6.0	33