
Rasappa Viswanathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5876955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection, 2001, 20, 1-11.	1.0	569
2	Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biology and Biochemistry, 2001, 33, 603-612.	4.2	263
3	Title is missing!. BioControl, 2001, 46, 493-510.	0.9	157
4	Disease Scenario and Management of Major Sugarcane Diseases in India. Sugar Tech, 2011, 13, 336-353.	0.9	139
5	Induced systemic resistance by fluorescent pseudomonads against red rot disease of sugarcane caused by Colletotrichum falcatum. Crop Protection, 2002, 21, 1-10.	1.0	78
6	Characterization and genetic diversity of sugarcane streak mosaic virus causing mosaic in sugarcane. Virus Genes, 2008, 36, 553-564.	0.7	59
7	Sugarcane proteomics: Establishment of a protein extraction method for 2â€ĐE in stalk tissues and initiation of sugarcane proteome reference map. Electrophoresis, 2010, 31, 1959-1974.	1.3	57
8	Induction of systemic resistance by plant growth promoting rhizobacteria against red rot disease in sugarcane. Sugar Tech, 1999, 1, 67-76.	0.9	55
9	Sugarcane proteomics: An update on current status, challenges, and future prospects. Proteomics, 2015, 15, 1658-1670.	1.3	48
10	Identification of three genotypes of sugarcane yellow leaf virus causing yellow leaf disease from India and their molecular characterization. Virus Genes, 2008, 37, 368-379.	0.7	47
11	Impact of mosaic infection on growth and yield of sugarcane. Sugar Tech, 2005, 7, 61-65.	0.9	45
12	Antifungal activity of chitinases produced by some fluorescent pseudomonads against Colletotrichum falcatum Went causing red rot disease in sugarcane. Microbiological Research, 2001, 155, 309-314.	2.5	44
13	Proteomic analysis of a compatible interaction between sugarcane and <i>Sporisorium scitamineum</i> . Proteomics, 2016, 16, 1111-1122.	1.3	39
14	Genetic diversity of Sugarcane bacilliform virus isolates infecting Saccharum spp. in India. Virus Genes, 2013, 46, 505-516.	0.7	35
15	Complete genome characterization of Sugarcane yellow leaf virus from India: Evidence for RNA recombination. European Journal of Plant Pathology, 2013, 135, 335-349.	0.8	34
16	Impact of Sugarcane yellow leaf virus (ScYLV) infection on physiological efficiency and growth parameters of sugarcane under tropical climatic conditions in India. Acta Physiologiae Plantarum, 2014, 36, 1805-1822.	1.0	34
17	Varietal Degeneration in Sugarcane and its Management in India. Sugar Tech, 2016, 18, 1-7.	0.9	34
18	Biology and management of sugarcane yellow leaf virus: an historical overview. Archives of Virology, 2015, 160, 2921-2934.	0.9	32

#	Article	IF	CITATIONS
19	Comparative secretome analysis of Colletotrichum falcatum identifies a cerato-platanin protein (EPL1) as a potential pathogen-associated molecular pattern (PAMP) inducing systemic resistance in sugarcane. Journal of Proteomics, 2017, 169, 2-20.	1.2	30
20	Pathogenic and Molecular Confirmation of Fusarium sacchari Causing Wilt in Sugarcane. Sugar Tech, 2011, 13, 68-76.	0.9	29
21	Diagnosis of Sugarcane yellow leaf virus in asymptomatic sugarcane by RT-PCR. Sugar Tech, 2009, 11, 368-372.	0.9	27
22	Molecular characterization of Indian sugarcane streak mosaic virus isolate. Virus Genes, 2013, 46, 186-189.	0.7	27
23	Induction of systemic resistance toColletotrichum falcatum in sugarcane by a synthetic signal molecule, acibenzolar-S-Methyl(CGA-245704). Phytoparasitica, 2001, 29, 231-242.	0.6	26
24	Epidemiology of Fusarium Diseases in Sugarcane: A New Discovery of Same Fusarium sacchari Causing Two Distinct Diseases, Wilt and Pokkah Boeng. Sugar Tech, 2017, 19, 638-646.	0.9	26
25	Identification of new variants of SCMV causing sugarcane mosaic in India and assessing their genetic diversity in relation to SCMV type strains. Virus Genes, 2009, 39, 375-386.	0.7	25
26	Detection of three major RNA viruses infecting sugarcane by multiplex reverse transcription–polymerase chain reaction (multiplex-RT-PCR). Australasian Plant Pathology, 2010, 39, 79.	0.5	25
27	Detection of sugarcane bacilliform virus in sugarcane germplasm. Acta Virologica, 1996, 40, 5-8.	0.3	25
28	Quantification of sugarcane yellow leaf virus in sugarcane following transmission through aphid vector, Melanaphis sacchari. VirusDisease, 2015, 26, 237-242.	1.0	24
29	Mycolytic effect of extracellular enzymes of antagonistic microbes to Colletotrichum falcatum, red rot pathogen of sugarcane. World Journal of Microbiology and Biotechnology, 2003, 19, 953-959.	1.7	23
30	Advances in proteomic technologies and their scope of application in understanding plant–pathogen interactions. Journal of Plant Biochemistry and Biotechnology, 2017, 26, 371-386.	0.9	23
31	Compatibility of biocontrol agents with fungicides against red rot disease of sugarcane. Sugar Tech, 2002, 4, 131-136.	0.9	22
32	Unraveling the Genetic Complexities in Gene Set of Sugarcane Red Rot Pathogen Colletotrichum falcatum Through Transcriptomic Approach. Sugar Tech, 2017, 19, 604-615.	0.9	22
33	Differential Regulation of Defense-Related Gene Expression in Response to Red Rot Pathogen Colletotrichum falcatum Infection in Sugarcane. Applied Biochemistry and Biotechnology, 2013, 171, 488-503.	1.4	21
34	Understanding sugarcane defence responses during the initial phase of Colletotrichum falcatum pathogenesis by suppression subtractive hybridization (SSH). Physiological and Molecular Plant Pathology, 2015, 91, 131-140.	1.3	21
35	Sustainable Sugarcane Cultivation in India Through Threats of Red Rot by Varietal Management. Sugar Tech, 2021, 23, 239-253.	0.9	21
36	Genetic variability and potential recombination events in the HC-Pro gene of sugarcane streak mosaic virus. Archives of Virology, 2012, 157, 1371-1375.	0.9	20

#	Article	IF	CITATIONS
37	CfPDIP1, a novel secreted protein of Colletotrichum falcatum, elicits defense responses in sugarcane and triggers hypersensitive response in tobacco. Applied Microbiology and Biotechnology, 2018, 102, 6001-6021.	1.7	20
38	Impact of the viruses associated with mosaic and yellow leaf disease on varietal degeneration in sugarcane. Phytoparasitica, 2019, 47, 591-604.	0.6	20
39	Bio-formulation of fluorescentPseudomonasspp. induces systemic resistance against red rot disease and enhances commercial sugar yield in sugarcane. Archives of Phytopathology and Plant Protection, 2008, 41, 377-388.	0.6	19
40	Genetic Diversity of Sugarcane Grassy Shoot (SCGS)-Phytoplasmas Causing Grassy Shoot Disease in India. Sugar Tech, 2011, 13, 220-228.	0.9	19
41	Emergence of New Pathogenic Variants in Colletotrichum falcatum, Stalk Infecting Ascomycete in Sugarcane: Role of Host Varieties. Sugar Tech, 2020, 22, 473-484.	0.9	19
42	Biocontrol of Colletotrichum falcatum with volatile metabolites produced by endophytic bacteria and profiling VOCs by headspace SPME coupled with GC–MS. Sugar Tech, 2021, 23, 94-107.	0.9	19
43	Occurrence of sugarcane yellow leaf virus in india. Sugar Tech, 2000, 2, 37-38.	0.9	18
44	Duplex — reverse transcription — polymerase chain reaction (D-RT-PCR)-a technique for the simultaneous detection of viruses causing sugarcane mosaic. Sugar Tech, 2008, 10, 81-86.	0.9	18
45	Differential accumulation of 3-deoxy anthocyanidin phytoalexins in sugarcane varieties varying in red rot resistance in response to Colletotrichum falcatum infection. Sugar Tech, 2008, 10, 154-157.	0.9	18
46	Expression profiling of transcription factors (TFs) in sugarcane X Colletotrichum falcatum interaction. Journal of Plant Biochemistry and Biotechnology, 2013, 22, 286-294.	0.9	18
47	Draft Genome Sequence of Colletotrichum falcatum - A Prelude on Screening of Red Rot Pathogen in Sugarcane. Journal of Genomics, 2016, 4, 1-3.	0.6	18
48	Identification of Differentially Expressed Genes in Sugarcane During Pathogenesis of Colletotrichum falcatum by Suppression Subtractive Hybridization (SSH). Sugar Tech, 2016, 18, 176-183.	0.9	18
49	Pathogen Virulence in Sugarcane Red Rot Pathogen Versus Varieties in Cultivation: Classical Case of Loss in Virulence in the Pathotype CF06 (Cf671). Sugar Tech, 2017, 19, 293-299.	0.9	18
50	Progress in understanding fungal diseases affecting sugarcane: red rot. Burleigh Dodds Series in Agricultural Science, 2018, , 201-219.	0.1	17
51	Ultrasensitive nano-gold labelled, duplex lateral flow immunochromatographic assay for early detection of sugarcane mosaic viruses. Scientific Reports, 2022, 12, 4144.	1.6	17
52	Isolation and identification of endophytic bacterial strains from sugarcane stalks and theirin vitro antagonism against the red rot pathogen. Sugar Tech, 2003, 5, 25-29.	0.9	16
53	Detection of sugarcane yellow leaf virus, the causal agent of yellow leaf syndrome in sugarcane by DAS-ELISA. Archives of Phytopathology and Plant Protection, 2004, 37, 169-176.	0.6	16
54	Molecular Profiling of Systemic Acquired Resistance (SAR)-Responsive Transcripts in Sugarcane Challenged with Colletotrichum falcatum. Applied Biochemistry and Biotechnology, 2014, 174, 2839-2850.	1.4	16

#	Article	IF	CITATIONS
55	Variability in yellow leaf symptom expression caused by the Sugarcane yellow leaf virus and its seasonal influence in sugarcane. Phytoparasitica, 2015, 43, 339-353.	0.6	16
56	Defense Transcriptome Analysis of Sugarcane and Colletotrichum falcatum Interaction Using Host Suspension Cells and Pathogen Elicitor. Sugar Tech, 2016, 18, 16-28.	0.9	16
57	Expression analysis on mycoparasitism related genes during antagonism of Trichoderma with Colletotrichum falcatum causing red rot in sugarcane. Journal of Plant Biochemistry and Biotechnology, 2018, 27, 351-361.	0.9	16
58	Present Status and Future Management Strategies for Sugarcane Yellow Leaf Virus: A Major Constraint to the Global Sugarcane Production. Plant Pathology Journal, 2020, 36, 536-557.	0.7	16
59	Combined effect of chemotherapy and meristem culture on sugarcane mosaic virus elimination in sugarcane. Sugar Tech, 2002, 4, 19-25.	0.9	15
60	Fusarium diseases affecting sugarcane production in India. Indian Phytopathology, 2020, 73, 415-424.	0.7	15
61	Efficacy ofPseudomonas spp. strains against soil borne and sett borne inoculum ofColletotrichum falcatum causing red rot disease in sugarcane. Sugar Tech, 2000, 2, 26-29.	0.9	14
62	Talc formulated fluorescent pseudomonads for sugarcane red rot suppression and enhanced yield under field conditions. Sugar Tech, 2003, 5, 37-43.	0.9	14
63	Specific adaptation of colletotrichum falcatum pathotypes to sugarcane cultivars. Sugar Tech, 2006, 8, 54-58.	0.9	14
64	Siderophores and iron nutrition on the pseudomonas mediated antagonism against colletotrichum falcatum in sugarcane. Sugar Tech, 2007, 9, 57-60.	0.9	14
65	DISEASE RESISTANCE IN SUGARCANE – AN OVERVIEW. Scientia Agraria Paranaensis, 2015, 14, 200-212.	0.1	14
66	Different aerated steam therapy (AST) regimes on the development of grassy shoot disease symptoms in sugarcane. Sugar Tech, 2001, 3, 83-91.	0.9	13
67	Note: Comparison of antibody- and genome-based diagnostic techniques forSugarcane mosaic virus in sugarcane. Phytoparasitica, 2004, 32, 52-56.	0.6	13
68	Induction of systemic acquired resistance (SAR) using synthetic signal molecules against Colletotrichum falcatum in sugarcane. Sugar Tech, 2009, 11, 274-281.	0.9	13
69	RT-PCR/PCR analysis detected mixed infection of DNA and RNA viruses infecting sugarcane crops in different states of India. Sugar Tech, 2009, 11, 373-380.	0.9	13
70	Characterization and 3D structure prediction of chitinase induced in sugarcane during pathogenesis of Colletotrichum falcatum. Journal of Plant Biochemistry and Biotechnology, 2015, 24, 1-8.	0.9	13
71	Comparative transcriptome analysis of candidate secretory effector proteins from Colletotrichum falcatum infecting sugarcane. Agri Gene, 2019, 13, 100089.	1.9	13
72	Detection of Phytoplasmas Causing Grassy Shoot Disease in Sugarcane by PCR Technique. Sugar Tech, 2005, 7, 71-73.	0.9	12

RASAPPA VISWANATHAN

#	Article	IF	CITATIONS
73	Mechanism of resistance induced by plant activators againstColletotrichum falcatumin sugarcane. Archives of Phytopathology and Plant Protection, 2006, 39, 259-272.	0.6	12
74	Molecular characterization of Indian Sugarcane streak mosaic virus isolates reveals recombination and negative selection in the P1 gene. Gene, 2014, 552, 199-203.	1.0	12
75	Disease suppressive effects of resistance-inducing agents against red rot of sugarcane. European Journal of Plant Pathology, 2017, 149, 285-297.	0.8	12
76	Immunology of the pathogen virulence and phytotoxin production in relation to disease severity: a case study in sheath blight of rice. Folia Microbiologica, 2002, 47, 551-558.	1.1	11
77	Interaction between sugarcane and Colletotrichum falcatum causing red rot: Understanding disease resistance at transcription level. Sugar Tech, 2009, 11, 44-50.	0.9	11
78	Differential Induction of 3-deoxyanthocyanidin Phytoalexins in Relation to Colletotrichum falcatum Resistance in Sugarcane. Sugar Tech, 2015, 17, 314-321.	0.9	11
79	InÂvitro secretomic analysis identifies putative pathogenicity-related proteins of Sporisorium scitamineum – The sugarcane smut fungus. Fungal Biology, 2017, 121, 199-211.	1.1	11
80	Phylogenetic analysis and signature of recombination hotspots in sugarcane mosaic virus infecting sugarcane in India. Phytoparasitica, 2019, 47, 275-291.	0.6	11
81	RNA-mediated silencing of PKS1 gene in Colletotrichum falcatum causing red rot in sugarcane. European Journal of Plant Pathology, 2019, 153, 371-384.	0.8	11
82	Development of Duplex-Immunocapture (Duplex-IC) RT-PCR for the Detection of Sugarcane streak mosaic virus and Sugarcane mosaic virus in Sugarcane. Sugar Tech, 2013, 15, 399-405.	0.9	10
83	Mechanized Means of Sett Treatment: An Effective Way of Delivering Fungicides for the Management of Red Rot in Sugarcane. Sugar Tech, 2017, 19, 176-182.	0.9	10
84	Putative orthologs of Ustilago maydis effectors screened from the genome of sugarcane smut fungus - Sporisorium scitamineum. Australasian Plant Pathology, 2017, 46, 147-156.	0.5	10
85	Role of Melanin in Colletotrichum falcatum Pathogenesis Causing Sugarcane Red Rot. Sugar Tech, 2017, 19, 584-591.	0.9	10
86	Biocontrol Strategies to Manage Fungal Diseases in Sugarcane. Sugar Tech, 2019, 21, 202-212.	0.9	10
87	Biological Suppression of Sugarcane Smut with Endophytic Bacteria. Sugar Tech, 2019, 21, 653-660.	0.9	10
88	Use of Green Fluorescent Protein Expressing Colletotrichum falcatum, the Red Rot Pathogen for Precise Host–Pathogen Interaction Studies in Sugarcane. Sugar Tech, 2020, 22, 112-121.	0.9	10
89	Growing severity of ratoon stunting disease of sugarcane in India. Sugar Tech, 2001, 3, 154-159.	0.9	9
90	Sugarcane mosaic virus infection progress in relation to age of sugarcane. Sugar Tech, 2003, 5, 21-24.	0.9	9

RASAPPA VISWANATHAN

#	Article	IF	CITATIONS
91	Efficacy of thiophanate methyl against red rot of sugarcane. Acta Phytopathologica Et Entomologica Hungarica, 2004, 39, 39-47.	0.1	9
92	Varietal Breakdown to Red Rot in Sugarcane Revealed by Comparing Two Colletotrichum falcatum Inoculation Methods. Sugar Tech, 2020, 22, 1063-1075.	0.9	9
93	Behaviour of Soil Borne Inoculum of Colletotrichum falcatum in Causing Red Rot in Sugarcane Varieties with Varying Disease Resistance. Sugar Tech, 2020, 22, 485-497.	0.9	9
94	Development of a Scoring System for Sugarcane Mosaic Disease and Genotyping of Sugarcane Germplasm for Mosaic Viruses. Sugar Tech, 2021, 23, 1105-1117.	0.9	9
95	Mixed Infection of Sugarcane Yellow Leaf Virus and Grassy Shoot Phytoplasma in Yellow Leaf Affected Indian Sugarcane Cultivars. Plant Pathology Journal, 2020, 36, 364-377.	0.7	9
96	Impact of serial thermotherapy onsugarcane mosaic virustitre and regeneration in sugarcane: Auswirkung serieller thermotherapie auf zuckerrohr-mosaikvirustiter und regeneration bei zuckerrohr. Archives of Phytopathology and Plant Protection, 2003, 36, 173-178.	0.6	8
97	Identification of Pathogenicity Determinants in Colletotrichum falcatum Using Wild and Mutant Cultures. Sugar Tech, 2012, 14, 383-390.	0.9	8
98	Identification of differential expressed proteins and establishing a defense proteome of sugarcane in response to Colletotrichum falcatum infection. Journal of Plant Pathology, 2020, 102, 685-702.	0.6	8
99	Host-pathogen interaction in sugarcane and red rot pathogen: exploring expression of phytoalexin biosynthesis pathway genes. Indian Phytopathology, 2021, 74, 529-535.	0.7	8
100	Role of miRNAs in the host–pathogen interaction between sugarcane and Colletotrichum falcatum, the red rot pathogen. Plant Cell Reports, 2021, 40, 851-870.	2.8	8
101	Impact of yellow leaf disease in sugarcane and its successful disease management to sustain crop production. Indian Phytopathology, 2021, 74, 573-586.	0.7	8
102	Grassy shoot: The destructive disease of sugarcane. Phytopathogenic Mollicutes, 2020, 10, 10.	0.1	8
103	Production of secondary metabolites by strains of Pseudomonas spp. antagonistic to Colletotrichum falcatum causing red rot disease in sugarcane. Acta Phytopathologica Et Entomologica Hungarica, 2004, 39, 29-38.	0.1	7
104	Interaction betweenColletotrichum falcatumpathotypes and biocontrol agents. Archives of Phytopathology and Plant Protection, 2008, 41, 311-317.	0.6	7
105	Inheritance of red rot resistance in sugarcane (Saccharum sp. hybrids). Sugar Tech, 2010, 12, 167-171.	0.9	7
106	Molecular detection and identification of thirteen isolates of Sugarcane yellow leaf virus associated with sugarcane yellow leaf disease in nine sugarcane growing states of India. Australasian Plant Pathology, 2011, 40, 522-528.	0.5	7
107	Variation in Colletotrichum falcatum-Red Rot Pathogen of Sugarcane in Relation to Host Resistance. Sugar Tech, 2012, 14, 181-187.	0.9	7
108	Sugarcane Wilt: Pathogen Recovery from Different Tissues and Variation in Cultural Characters. Sugar Tech, 2014, 16, 50-66.	0.9	7

#	Article	IF	CITATIONS
109	Molecular Characterization of Sugarcane Viruses and Their Diagnostics. , 2018, , 175-193.		7
110	Reverse transcription loop-mediated isothermal amplification based rapid detection of Sugarcane mosaic virus and Sugarcane streak mosaic virus associated with mosaic disease of sugarcane. Indian Phytopathology, 2020, 73, 349-358.	0.7	7
111	Molecular Characterization of Pathogenicity Gene Homologs in Colletotrichum falcatum Causing Red Rot in Sugarcane. Sugar Tech, 2017, 19, 563-572.	0.9	6
112	Comparative expression analysis of potential pathogenicity-associated genes of high- and low-virulent Sporisorium scitamineum isolates during interaction with sugarcane. 3 Biotech, 2021, 11, 353.	1.1	6
113	Pathogenic behaviour pattern of Colletotrichum falcatum isolates of sugarcane in sub-tropical India. Vegetos, 2016, 29, 76.	0.8	6
114	Population dynamics of Melanaphis sacchari (Zehntner), the aphid vector of sugarcane yellow leaf virus under tropical conditions in India. Tropical Plant Pathology, 2022, 47, 260-277.	0.8	6
115	Transcriptional reprogramming of major defense-signaling pathways during defense priming and sugarcane-Colletotrichum falcatum interaction. Molecular Biology Reports, 2020, 47, 8911-8923.	1.0	5
116	Controlled Condition Testing (CCT): An Ideal High-Throughput Method for Screening of Pre-Release Clones and Progenies for Red Rot Resistance in Sugarcane. Sugar Tech, 2021, 23, 1045-1055.	0.9	5
117	Measures to Minimize the Growing Menace of Red Rot of Sugarcane in Subtropical India. Sugar Tech, 2021, 23, 1207-1210.	0.9	5
118	First report of Maize yellow mosaic virus (MaYMV) infecting sugarcane in India and its molecular characterization. Australasian Plant Pathology, 2021, 50, 633-638.	0.5	5
119	Effects of Biotic and Abiotic Agents on Sugarcane mosaic virus Titre, Oxidative Enzymes and Phenolics in Sorghum bicolor. Acta Phytopathologica Et Entomologica Hungarica, 2005, 40, 9-22.	0.1	5
120	SUGARCANE RUST: CHANGING DISEASE DYNAMICS AND ITS MANAGEMENT. Journal of Sugarcane Research, 2019, 9, 97.	0.2	5
121	STATUS OF LEAF FLECK CAUSED BY SUGARCANE BACILLIFORM VIRUS INCIDENCE AND SEVERITY IN DIFFERENT SUGARCANE GROWING AREAS OF KERALA AND TAMIL NADU. Journal of Sugarcane Research, 2020, 10, 74.	0.2	5
122	Carbohydrate active enzymes (CAZy) regulate cellulolytic and pectinolytic enzymes in Colletotrichum falcatum causing red rot in sugarcane. 3 Biotech, 2022, 12, 48.	1.1	5
123	Time course of peroxidase accumulation in sugarcane cultivars in response toColletotrichum falcatum infection. Sugar Tech, 2004, 6, 47-52.	0.9	4
124	Comparison of pcr and dac-elisa for the diagnosis of sugarcane bacilliform virus in sugarcane. Sugar Tech, 2005, 7, 119-122.	0.9	4
125	Pseudomonasspp. colonization in sugarcane rhizosphere reduces titre ofColletotrichum falcatumWent-causing red rot disease of sugarcane. Archives of Phytopathology and Plant Protection, 2006, 39, 39-44.	0.6	4
126	Variability in Breeding Pool of Sugarcane (Saccharum spp.) for Yield, Quality and Resistance to Different Biotic and Abiotic Stress Factors. Sugar Tech, 2015, 17, 107-115.	0.9	4

#	Article	IF	CITATIONS
127	ABC Transporter from Sugarcane Grassy Shoot Phytoplasma: Gene Sequencing and Sequence Characterization. Sugar Tech, 2016, 18, 407-413.	0.9	4
128	Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) Assay for Rapid Diagnosis of Sugarcane yellow leaf virus in Sugarcane. Sugar Tech, 2018, 20, 708-716.	0.9	4
129	Knock-down of glucose transporter and sucrose non-fermenting gene in the hemibiotrophic fungus Colletotrichum falcatum causing sugarcane red rot. Molecular Biology Reports, 2021, 48, 2053-2061.	1.0	4
130	True Seed Transmission of Sugarcane bacilliform virus (SCBV) in Sugarcane. Sugar Tech, 2022, 24, 513-521.	0.9	4
131	BROWN SPOT OF SUGARCANE: AN EMERGING DISEASE IN SOUTH WESTERN REGION IN INDIA. Journal of Sugarcane Research, 2020, 10, 87.	0.2	4
132	Tête-Ã-Tête during plant-pathogen interactions: Intricacies involved and beyond. Plant Disease Research, 2020, 35, 89-96.	0.1	4
133	Molecular Discrimination of Opposite Mating Type Haploids of Sporisorium scitamineum and Establishing Their Dimorphic Transitions During Interaction with Sugarcane. Sugar Tech, 2022, 24, 1430-1440.	0.9	4
134	Differential host responses of sugarcane to Colletotrichum falcatum reveal activation of probable effector triggered immunity (ETI) in defence responses. Plant Cell Reports, 2022, 41, 1461-1476.	2.8	4
135	A New stalk rot disease of sugarcane caused byphaeocytostroma sacchari in india. Sugar Tech, 2003, 5, 61-64.	0.9	3
136	Identification and Characterization of Differentially Expressed Proteins from Trichoderma harzianum During Interaction with Colletotrichum falcatum Causing Red Rot in Sugarcane. Sugar Tech, 2019, 21, 765-772.	0.9	3
137	Identification of the RNA silencing suppressor activity of sugarcane streak mosaic virus P1 gene. VirusDisease, 2020, 31, 333-340.	1.0	3
138	Selection of reference genes for normalization of microRNA expression in sugarcane stalks during its interaction with Colletotrichum falcatum. 3 Biotech, 2021, 11, 72.	1.1	3
139	Development and characterization of genomic SSR marker for virulent strain-specific Colletotrichum falcatum infecting sugarcane. 3 Biotech, 2021, 11, 20.	1.1	3
140	CO 11015 (ATULYA) A RECENTLY NOTIFIED SUGARCANE VARIETY FOR TAMIL NADU. Journal of Sugarcane Research, 2019, 9, 193.	0.2	3
141	COLLETOTRICHUM FALCATUM CAUSING RED ROT IN SUGARCANE: GENOMIC AND PROTEOMIC APPROACHES TO CHARACTERIZE THE PATHOGENIC VARIATION. Journal of Sugarcane Research, 2019, 9, 164.	0.2	3
142	Varietal Break Down to Red Rot in the Sugarcane Variety Co 0238 Mimics Vertifolia Effect: Characterizing New Colletotrichum falcatum Pathotype CF13. Sugar Tech, 2022, 24, 1479-1496.	0.9	3
143	Sustaining Sugarcane Production in Guatemala and Nicaragua Through Efficient Disease Management Approaches. Sugar Tech, 2020, 22, 361-366.	0.9	2
144	Plant and Weather Factors on Resistance of Saccharum officinarum Germplasm Against Ring Spot Disease. Sugar Tech, 2021, 23, 720-729.	0.9	2

#	Article	IF	CITATIONS
145	Exploring the Sources of Red Rot Resistance Available in National Breeding Gene Pool and their Potential Utilization for Sugarcane Improvement in India. Sugar Tech, 2021, 23, 843-853.	0.9	2
146	Expression Analyses of Resistance-Associated Candidate Genes During Sugarcane-Colletotrichum falcatum Went Interaction. Sugar Tech, 2021, 23, 1056-1063.	0.9	2
147	Genome wide association studies in sugarcane host pathogen system for disease resistance: an update on the current status of research. Indian Phytopathology, 2021, 74, 865-874.	0.7	2
148	Molecular characterization based on spermidine/putrescine ABC transporter gene of sugarcane grassy shoot (16SrXI), coconut root wilt (16SrXI), aster yellows (16SrI) and brinjal little leaf (16SrVI) phytoplasmas. Phytopathogenic Mollicutes, 2014, 4, 16.	0.1	2
149	Protoplast-mediated transformation in Sporisorium scitamineum facilitates visualization of in planta developmental stages in sugarcane. Molecular Biology Reports, 2021, 48, 7921-7932.	1.0	2
150	A highly efficient stratagem for protoplast isolation and genetic transformation in filamentous fungus Colletotrichum falcatum. Folia Microbiologica, 2022, , .	1.1	2
151	The Current Status of Luteovirus and Polerovirus Research in India. , 2017, , 285-305.		1
152	Potyviruses Infecting Crop Plants in India. , 2017, , 361-404.		1
153	A low cost method for early detection of airborne Puccinia rust spores using glass slides and foldscope in the sugarcane field. Indian Phytopathology, 2021, 74, 835-837.	0.7	1
154	Epidemiology of sugarcane wilt: predisposition by root borer Polyocha depresella a myth or reality. Indian Phytopathology, 0, , 1.	0.7	1
155	Modified Scale for Evaluating Sugarcane Clones for Fusarium wilt Resistance with Plug Method of Inoculation. Sugar Tech, 0, , 1.	0.9	1
156	Morphological and molecular characterization ofColletotrichum musaeisolates from various banana (Musaspp.) cultivars. Acta Phytopathologica Et Entomologica Hungarica, 2011, 46, 191-202.	0.1	0