W Daniel Kissling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5876882/publications.pdf

Version: 2024-02-01

71061 51562 8,513 102 41 86 citations h-index g-index papers 110 110 110 13425 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 2013, 88, 15-30.	4.7	1,224
2	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
3	Geological and climatic influences on mountain biodiversity. Nature Geoscience, 2018, 11, 718-725.	5 . 4	390
4	Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography, 2007, 17, 070618060123007-???.	2.7	352
5	Biodiversity, Species Interactions and Ecological Networks in a Fragmented World. Advances in Ecological Research, 2012, 46, 89-210.	1.4	284
6	How to understand species' niches and range dynamics: a demographic research agenda for biogeography. Journal of Biogeography, 2012, 39, 2146-2162.	1.4	249
7	Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany, 2011, 108, 1391-1416.	1.4	234
8	Building essential biodiversity variables (<scp>EBV</scp> s) of species distribution and abundance at a global scale. Biological Reviews, 2018, 93, 600-625.	4.7	218
9	Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7379-7384.	3. 3	209
10	Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects?. Global Ecology and Biogeography, 2008, 17, 327-339.	2.7	197
11	Food plant diversity as broad-scale determinant of avian frugivore richness. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 799-808.	1.2	188
12	Towards global data products of Essential Biodiversity Variables on species traits. Nature Ecology and Evolution, 2018, 2, 1531-1540.	3.4	163
13	Challenges and prospects in the telemetry of insects. Biological Reviews, 2014, 89, 511-530.	4.7	160
14	Monitoring biodiversity change through effective global coordination. Current Opinion in Environmental Sustainability, 2017, 29, 158-169.	3.1	147
15	The global distribution of frugivory in birds. Global Ecology and Biogeography, 2009, 18, 150-162.	2.7	125
16	Global patterns and drivers of phylogenetic structure in island floras. Scientific Reports, 2015, 5, 12213.	1.6	123
17	Keystone species in seed dispersal networks are mainly determined by dietary specialization. Oikos, 2015, 124, 1031-1039.	1.2	117
18	Extending point pattern analysis for objects of finite size and irregular shape. Journal of Ecology, 2006, 94, 825-837.	1.9	116

#	Article	IF	CITATIONS
19	Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecology and Evolution, 2014, 4, 2913-2930.	0.8	109
20	Trait-Based Assessments of Climate-Change Impacts on Interacting Species. Trends in Ecology and Evolution, 2020, 35, 319-328.	4.2	106
21	Priority list of biodiversity metrics to observe from space. Nature Ecology and Evolution, 2021, 5, 896-906.	3.4	101
22	To advance sustainable stewardship, we must document not only biodiversity but geodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16155-16158.	3.3	96
23	Ecological specialization matters: longâ€term trends in butterfly species richness and assemblage composition depend on multiple functional traits. Diversity and Distributions, 2015, 21, 792-802.	1.9	95
24	Omnivory in birds is a macroevolutionary sink. Nature Communications, 2016, 7, 11250.	5.8	95
25	Quaternary and preâ€Quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecology and Biogeography, 2012, 21, 909-921.	2.7	91
26	Origins of global mountain plant biodiversity: Testing the â€~mountainâ€geobiodiversity hypothesis'. Journal of Biogeography, 2019, 46, 2826-2838.	1.4	87
27	Mammal predator and prey species richness are strongly linked at macroscales. Ecology, 2013, 94, 1112-1122.	1.5	85
28	The minimum land area requiring conservation attention to safeguard biodiversity. Science, 2022, 376, 1094-1101.	6.0	85
29	Frugivory-related traits promote speciation of tropical palms. Nature Ecology and Evolution, 2017, 1, 1903-1911.	3.4	77
30	Local forest structure, climate and human disturbance determine regional distribution of boreal bird species richness in <scp>A</scp> lberta, <scp>C</scp> anada. Journal of Biogeography, 2013, 40, 1131-1142.	1.4	72
31	Morphological trait matching shapes plant–frugivore networks across the Andes. Ecography, 2018, 41, 1910-1919.	2.1	71
32	Multispecies interactions across trophic levels at macroscales: retrospective and future directions. Ecography, 2015, 38, 346-357.	2.1	65
33	Spatial structure of an individualâ€based plant–pollinator network. Oikos, 2014, 123, 1301-1310.	1.2	59
34	Fundamental species traits explain provisioning services of tropical American palms. Nature Plants, 2017, 3, 16220.	4.7	59
35	Extinctionâ€driven changes in frugivore communities on oceanic islands. Ecography, 2018, 41, 1245-1255.	2.1	53
36	Use and categorization of Light Detection and Ranging vegetation metrics in avian diversity and species distribution research. Diversity and Distributions, 2019, 25, 1045-1059.	1.9	52

#	Article	IF	CITATIONS
37	PalmTraits 1.0, a species-level functional trait database of palms worldwide. Scientific Data, 2019, 6, 178.	2.4	51
38	To adapt or go extinct? The fate of megafaunal palm fruits under past global change. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180882.	1.2	50
39	Phenology of high-arctic butterflies and their floral resources: Species-specific responses to climate change. Environmental Epigenetics, 2014, 60, 243-251.	0.9	49
40	Functional traits help to explain half-century long shifts in pollinator distributions. Scientific Reports, 2016, 6, 24451.	1.6	49
41	Niche packing and expansion account for species richness–productivity relationships in global bird assemblages. Global Ecology and Biogeography, 2018, 27, 604-615.	2.7	47
42	Towards a comprehensive climate impacts assessment of solar geoengineering. Earth's Future, 2017, 5, 93-106.	2.4	45
43	Multimillionâ€year climatic effects on palm species diversity in Africa. Ecology, 2013, 94, 2426-2435.	1.5	44
44	The Bari Manifesto: An interoperability framework for essential biodiversity variables. Ecological Informatics, 2019, 49, 22-31.	2.3	43
45	Functionally specialised birds respond flexibly to seasonal changes in fruit availability. Journal of Animal Ecology, 2017, 86, 800-811.	1.3	42
46	Beyond the Last Glacial Maximum: Island endemism is best explained by longâ€lasting archipelago configurations. Global Ecology and Biogeography, 2019, 28, 184-197.	2.7	41
47	Towards global interoperability for supporting biodiversity research on essential biodiversity variables (EBVs). Biodiversity, 2015, 16, 99-107.	0.5	38
48	The Neogene rise of the tropical Andes facilitated diversification of wax palms (<i>Ceroxylon</i>) Tj ETQq0 0 0 r the Linnean Society, 2016, 182, 303-317.	gBT /Over 0.8	lock 10 Tf 50 38
49	Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sensing of Environment, 2021, 252, 112122.	4.6	38
50	Geographical variation and environmental correlates of functional trait distributions in palms (Arecaceae) across the New World. Botanical Journal of the Linnean Society, 2015, 179, 602-617.	0.8	37
51	Global diversification of a tropical plant growth form: environmental correlates and historical contingencies in climbing palms. Frontiers in Genetics, 2015, 5, 452.	1.1	37
52	Frugivore-fruit size relationships between palms and mammals reveal past and future defaunation impacts. Nature Communications, 2020, 11, 4904.	5.8	35
53	Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Scientific Reports, 2019, 9, 17708.	1.6	34
54	Palm fruit colours are linked to the broad-scale distribution and diversification of primate colour vision systems. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192731.	1.2	34

#	Article	IF	CITATIONS
55	An operational definition of essential biodiversity variables. Biodiversity and Conservation, 2017, 26, 2967-2972.	1.2	33
56	Biogeographical, environmental and anthropogenic determinants of global patterns in bird taxonomic and trait turnover. Global Ecology and Biogeography, 2017, 26, 1190-1200.	2.7	33
57	A synthesis of animalâ€mediated seed dispersal of palms reveals distinct biogeographical differences in species interactions. Journal of Biogeography, 2019, 46, 466-484.	1.4	32
58	Downsizing of animal communities triggers stronger functional than structural decay in seed-dispersal networks. Nature Communications, 2020, 11, 1582.	5.8	32
59	Identifying fineâ€scale habitat preferences of threatened butterflies using airborne laser scanning. Diversity and Distributions, 2021, 27, 1251-1264.	1.9	30
60	Historical colonization and dispersal limitation supplement climate and topography in shaping species richness of African lizards (Reptilia: Agaminae). Scientific Reports, 2016, 6, 34014.	1.6	29
61	Which frugivoryâ€related traits facilitated historical longâ€distance dispersal in the custard apple family (Annonaceae)?. Journal of Biogeography, 2019, 46, 1874-1888.	1.4	28
62	Climate change reshapes the ecoâ€evolutionary dynamics of a Neotropical seed dispersal system. Global Ecology and Biogeography, 2021, 30, 1129-1138.	2.7	27
63	Impacts of large herbivores on spinescence and abundance of palms in the Pantanal, Brazil. Botanical Journal of the Linnean Society, 2016, 182, 465-479.	0.8	24
64	Environmental correlates of phylogenetic endemism in amphibians and the conservation of refugia in the Coastal Forests of Eastern Africa. Diversity and Distributions, 2017, 23, 875-887.	1.9	24
65	Global plantâ€frugivore trait matching is shaped by climate and biogeographic history. Ecology Letters, 2022, 25, 686-696.	3.0	24
66	Historical changes in the importance of climate and land use as determinants of Dutch pollinator distributions. Journal of Biogeography, 2017, 44, 696-707.	1.4	23
67	Global variation in woodpecker species richness shaped by tree availability. Journal of Biogeography, 2017, 44, 1824-1835.	1.4	22
68	A global spatially explicit database of changes in island palaeoâ€area and archipelago configuration during the late Quaternary. Global Ecology and Biogeography, 2018, 27, 500-505.	2.7	22
69	Oviposition site selection of an endangered butterfly at local spatial scales. Journal of Insect Conservation, 2015, 19, 377-391.	0.8	21
70	Associated evolution of fruit size, fruit colour and spines in Neotropical palms. Journal of Evolutionary Biology, 2020, 33, 858-868.	0.8	21
71	Identification of Linear Vegetation Elements in a Rural Landscape Using LiDAR Point Clouds. Remote Sensing, 2019, 11, 292.	1.8	20
72	<scp>L</scp> ate <scp>C</scp> enozoic climate and the phylogenetic structure of regional conifer floras worldâ€wide. Global Ecology and Biogeography, 2015, 24, 1136-1148.	2.7	19

#	Article	IF	CITATIONS
73	The mutualism–antagonism continuum in Neotropical palm–frugivore interactions: from interaction outcomes to ecosystem dynamics. Biological Reviews, 2022, 97, 527-553.	4.7	18
74	Canopy height explains species richness in the largest clade of Neotropical lianas. Global Ecology and Biogeography, 2020, 29, 26-37.	2.7	17
75	eEcoLiDAR, eScience infrastructure for ecological applications of LiDAR point clouds: reconstructing the 3D ecosystem structure for animals at regional to continental scales. Research Ideas and Outcomes, 0, 3, e14939.	1.0	17
76	Functional biogeography of dietary strategies in birds. Global Ecology and Biogeography, 2019, 28, 1004-1017.	2.7	16
77	The Cenozoic history of palms: Global diversification, biogeography and the decline of megathermal forests. Global Ecology and Biogeography, 2022, 31, 425-439.	2.7	16
78	Better together? Assessing different remote sensing products for predicting habitat suitability of wetland birds. Diversity and Distributions, 2022, 28, 685-699.	1.9	15
79	Classifying wetlandâ€related land cover types and habitats using fineâ€scale lidar metrics derived from countryâ€wide Airborne Laser Scanning. Remote Sensing in Ecology and Conservation, 2021, 7, 80-96.	2.2	14
80	Research questions to facilitate the future development of European long-term ecosystem research infrastructures: A horizon scanning exercise. Journal of Environmental Management, 2019, 250, 109479.	3.8	13
81	Research infrastructure challenges in preparing essential biodiversity variables data products for alien invasive species. Environmental Research Letters, 2019, 14, 025005.	2.2	13
82	Quantifying 3D vegetation structure in wetlands using differently measured airborne laser scanning data. Ecological Indicators, 2021, 127, 107752.	2.6	13
83	Projecting consequences of global warming for the functional diversity of fleshyâ€fruited plants and frugivorous birds along a tropical elevational gradient. Diversity and Distributions, 2019, 25, 1362-1374.	1.9	12
84	The megaherbivore gap after the non-avian dinosaur extinctions modified trait evolution and diversification of tropical palms. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212633.	1.2	12
85	Key impacts of climate engineering on biodiversity and ecosystems, with priorities for future research. Journal of Integrative Environmental Sciences, 0, , 1-26.	1.0	11
86	Notebookâ€asâ€aâ€VRE (NaaVRE): From private notebooks to a collaborative cloud virtual research environment. Software - Practice and Experience, 2022, 52, 1947-1966.	2.5	11
87	Spatial scale dependence of factors driving climate regulation services in the Americas. Global Ecology and Biogeography, 2018, 27, 828-838.	2.7	9
88	Has frugivory influenced the macroecology and diversification of a tropical keystone plant family?. Research Ideas and Outcomes, 0, 3, e14944.	1.0	9
89	Animal telemetry: Follow the insects. Science, 2015, 349, 597-597.	6.0	8
90	Deconstructing species richness–environment relationships in Neotropical lianas. Journal of Biogeography, 2020, 47, 2168-2180.	1.4	8

#	Article	IF	CITATIONS
91	Niche separation of wetland birds revealed from airborne laser scanning. Ecography, 2021, 44, 907-918.	2.1	8
92	Integration and harmonization of trait data from plant individuals across heterogeneous sources. Ecological Informatics, 2021, 62, 101206.	2.3	8
93	Functional susceptibility of tropical forests to climate change. Nature Ecology and Evolution, 2022, 6, 878-889.	3.4	8
94	Ecological and evolutionary significance of primates' most consumed plant families. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210737.	1.2	7
95	Biodiversity Observations Miner: A web application to unlock primary biodiversity data from published literature. Biodiversity Data Journal, 2019, 7, e28737.	0.4	5
96	Avian seed dispersal may be insufficient for plants to track future temperature change on tropical mountains. Global Ecology and Biogeography, 2022, 31, 848-860.	2.7	5
97	The role of deterministic succession during forest development within a southern African savanna. Biotropica, 2021, 53, 466-476.	0.8	4
98	Megafrugivores as fading shadows of the past: extant frugivores and the abiotic environment as the most important determinants of the distribution of palms in Madagascar. Ecography, 2022, 2022, .	2.1	4
99	A minimum set of Information Standards for Essential Biodiversity Variables. Biodiversity Information Science and Standards, 0, 3, .	0.0	3
100	Independent variation of avian sensitivity to climate change and traitâ€based adaptive capacity along a tropical elevational gradient. Diversity and Distributions, 0, , .	1.9	1
101	Understanding the relationship between fruit colour and primate vision requires multiple lines of evidence. A reply to Heymann & Fuzessy. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202981.	1.2	0
102	Towards an Essential Biodiversity Variable for Species Interactions. Biodiversity Information Science and Standards, 0, 2, e25409.	0.0	0