Shuiquan Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5876733/publications.pdf

Version: 2024-02-01

394421 434195 1,022 31 19 31 citations h-index g-index papers 31 31 31 631 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Friction and Wear Characteristics of Aqueous ZrO2/GO Hybrid Nanolubricants. Lubricants, 2022, 10, 109.	2.9	9
2	Effects of an Electrical Double Layer and Tribo-Induced Electric Field on the Penetration and Lubrication of Water-Based Lubricants. Lubricants, 2022, 10, 111.	2.9	4
3	Tribological performance of zeolite/sodium dodecylbenzenesulfonate hybrid water-based lubricants. Applied Surface Science, 2022, 598, 153764.	6.1	2
4	A novel lapping process for single-crystal sapphire using hybrid nanoparticle suspensions. International Journal of Mechanical Sciences, 2021, 191, 106099.	6.7	26
5	Ultra-precision grinding of Gd3Ga5O12 crystals with graphene oxide coolant: Material deformation mechanism and performance evaluation. Journal of Manufacturing Processes, 2021, 61, 417-427.	5.9	77
6	Roughness-dependent tribological characteristics of water-based GO suspensions with ZrO2 and TiO2 nanoparticles as additives. Tribology International, 2021, 161, 107073.	5 . 9	16
7	Polishing performance and mechanism of a water-based nanosuspension using diamond particles and GO nanosheets as additives. Tribology International, 2021, 164, 107241.	5.9	12
8	Water-based nanosuspensions: Formulation, tribological property, lubrication mechanism, and applications. Journal of Manufacturing Processes, 2021, 71, 625-644.	5.9	39
9	Machining characteristics and mechanism of GO/SiO2 nanoslurries in fixed abrasive lapping. Journal of Materials Processing Technology, 2020, 277, 116444.	6.3	26
10	Laser deposition of wear-resistant titanium oxynitride/titanium composite coatings on Ti-6Al-4V alloy. Applied Surface Science, 2020, 531, 147212.	6.1	34
11	Eco-Friendly Water-Based Nanolubricants for Industrial-Scale Hot Steel Rolling. Lubricants, 2020, 8, 96.	2.9	18
12	Novel water-based nanolubricant with superior tribological performance in hot steel rolling. International Journal of Extreme Manufacturing, 2020, 2, 025002.	12.7	24
13	Oxidation Behaviour of Steel During hot Rolling by Using TiO2-Containing Water-Based Nanolubricant. Oxidation of Metals, 2019, 92, 315-335.	2.1	9
14	Capillary penetration mechanism and machining characteristics of lubricant droplets in electrostatic minimum quantity lubrication (EMQL) grinding. Journal of Manufacturing Processes, 2019, 45, 571-578.	5.9	15
15	Effect of water-based nanolubricant containing nano-TiO2 on friction and wear behaviour of chrome steel at ambient and elevated temperatures. Wear, 2019, 426-427, 792-804.	3.1	32
16	Synergistic tribological performance of a water based lubricant using graphene oxide and alumina hybrid nanoparticles as additives. Tribology International, 2019, 135, 170-180.	5.9	61
17	Performance evaluation of graphene oxide nanosheet water coolants in the grinding of semiconductor substrates. Precision Engineering, 2019, 60, 291-298.	3.4	14
18	Tribological Characteristics of Aqueous Graphene Oxide, Graphitic Carbon Nitride, and Their Mixed Suspensions. Tribology Letters, 2018, 66, 1.	2.6	32

#	Article	IF	CITATIONS
19	Effects of Machining and Oil Mist Parameters on Electrostatic Minimum Quantity Lubrication–EMQL Turning Process. International Journal of Precision Engineering and Manufacturing - Green Technology, 2018, 5, 317-326.	4.9	39
20	Tribological and machining characteristics of a minimum quantity lubrication (MQL) technology using GO/SiO2 hybrid nanoparticle water-based lubricants as cutting fluids. International Journal of Advanced Manufacturing Technology, 2018, 96, 2931-2942.	3.0	54
21	Experimental evaluation on the effect of electrostatic minimum quantity lubrication (EMQL) in end milling of stainless steels. Machining Science and Technology, 2018, 22, 271-286.	2.5	22
22	Enhanced machining performance and lubrication mechanism of electrostatic minimum quantity lubrication-EMQL milling process. International Journal of Advanced Manufacturing Technology, 2018, 94, 655-666.	3.0	23
23	Friction and wear characteristics of TiO 2 nano-additive water-based lubricant on ferritic stainless steel. Tribology International, 2018, 117, 24-38.	5.9	126
24	Tribological and machining characteristics of an electrostatic minimum quantity lubrication (EMQL) technology using graphene nano-lubricants as cutting fluids. Journal of Manufacturing Processes, 2018, 34, 225-237.	5.9	68
25	Performance Evaluation and Lubrication Mechanism of Water-Based Nanolubricants Containing Nano-TiO2 in Hot Steel Rolling. Lubricants, 2018, 6, 57.	2.9	26
26	Tribological Performance and Lubrication Mechanism of Alumina Nanoparticle Water-Based Suspensions in Ball-on-Three-Plate Testing. Tribology Letters, 2017, 65, 1.	2.6	56
27	The pH-dependent structural and tribological behaviour of aqueous graphene oxide suspensions. Tribology International, 2017, 116, 460-469.	5.9	49
28	A study on process parameters in end milling of AISI-304 stainless steel under electrostatic minimum quantity lubrication conditions. International Journal of Advanced Manufacturing Technology, 2017, 90, 979-989.	3.0	42
29	Grinding performance and self–lubrication mechanism of phenolic resin-bonded grinding wheel filled with inclusion complex of β-cyclodextrin and dialkyl pentasulfide. Journal of Materials Processing Technology, 2015, 221, 163-171.	6.3	15
30	Tribological evaluation of contact-charged electrostatic spray lubrication as a new near-dry machining technique. Tribology International, 2015, 91, 74-84.	5.9	36
31	Tribological Performance and Lubrication Mechanism of Contact-Charged Electrostatic Spray Lubrication Technique. Tribology Letters, 2015, 59, 1.	2.6	16