Haotong Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5876360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions andÂcations. Nature Energy, 2017, 2, .	19.8	1,694
2	Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications, 2011, 47, 6858.	2.2	1,458
3	Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics, 2016, 10, 333-339.	15.6	1,271
4	Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy and Environmental Science, 2016, 9, 1752-1759.	15.6	917
5	Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Science Advances, 2017, 3, eaao5616.	4.7	635
6	Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nature Photonics, 2017, 11, 315-321.	15.6	580
7	Halide lead perovskites for ionizing radiation detection. Nature Communications, 2019, 10, 1066.	5.8	568
8	π onjugated Lewis Base: Efficient Trapâ€Passivation and Chargeâ€Extraction for Hybrid Perovskite Solar Cells. Advanced Materials, 2017, 29, 1604545.	11.1	543
9	Dopant compensation in alloyed CH3NH3PbBr3â^'xClx perovskite single crystals for gamma-ray spectroscopy. Nature Materials, 2017, 16, 826-833.	13.3	475
10	Polymerâ€Passivated Inorganic Cesium Lead Mixedâ€Halide Perovskites for Stable and Efficient Solar Cells with High Openâ€Circuit Voltage over 1.3 V. Advanced Materials, 2018, 30, 1705393.	11.1	401
11	Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Science Advances, 2019, 5, eaav8925.	4.7	388
12	Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Science Advances, 2016, 2, e1600534.	4.7	304
13	Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2018, 30, e1803428.	11.1	296
14	Lowâ€Noise and Largeâ€Linearâ€Dynamicâ€Range Photodetectors Based on Hybridâ€Perovskite Thinâ€Singleâ€Crystals. Advanced Materials, 2017, 29, 1703209.	11.1	281
15	Deep Red Emissive Carbonized Polymer Dots with Unprecedented Narrow Full Width at Half Maximum. Advanced Materials, 2020, 32, e1906641.	11.1	271
16	Composition Engineering in Doctorâ€Blading of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700302.	10.2	239
17	Reducing Surface Halide Deficiency for Efficient and Stable Iodide-Based Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 3989-3996.	6.6	236
18	Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nature Communications, 2019, 10, 4498.	5.8	234

HAOTONG WEI

#	Article	IF	CITATIONS
19	Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals. Nature Communications, 2017, 8, 14417.	5.8	189
20	Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nature Energy, 2020, 5, 657-665.	19.8	186
21	Efficient Flexible Solar Cell based on Compositionâ€∓ailored Hybrid Perovskite. Advanced Materials, 2017, 29, 1605900.	11.1	184
22	Sensitive and Stable 2D Perovskite Singleâ€Crystal Xâ€ray Detectors Enabled by a Supramolecular Anchor. Advanced Materials, 2020, 32, e2003790.	11.1	159
23	Spontaneous Passivation of Hybrid Perovskite by Sodium Ions from Glass Substrates: Mysterious Enhancement of Device Efficiency Revealed. ACS Energy Letters, 2017, 2, 1400-1406.	8.8	143
24	A Highly Sensitive Narrowband Nanocomposite Photodetector with Gain. Advanced Materials, 2016, 28, 2043-2048.	11.1	128
25	Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors. Advanced Materials, 2015, 27, 4975-4981.	11.1	107
26	Polypyrrole-Enveloped Pd and Fe ₃ O ₄ Nanoparticle Binary Hollow and Bowl-Like Superstructures as Recyclable Catalysts for Industrial Wastewater Treatment. ACS Applied Materials & Interfaces, 2014, 6, 450-458.	4.0	80
27	Selfâ€Filtered Narrowband Perovskite Photodetectors with Ultrafast and Tuned Spectral Response. Advanced Optical Materials, 2017, 5, 1700672.	3.6	78
28	Environmental Surface Stability of the MAPbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2018, 122, 3513-3522.	1.5	66
29	Low defects density CsPbBr ₃ single crystals grown by an additive assisted method for gamma-ray detection. Journal of Materials Chemistry C, 2020, 8, 11360-11368.	2.7	63
30	Detection of charged particles with a methylammonium lead tribromide perovskite single crystal. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 848, 106-108.	0.7	61
31	Facile Strategy for Facet Competition Management to Improve the Performance of Perovskite Single-Crystal X-ray Detectors. Journal of Physical Chemistry Letters, 2020, 11, 3529-3535.	2.1	60
32	The effects of composition and surface chemistry on the toxicity of quantum dots. Journal of Materials Chemistry B, 2013, 1, 6485.	2.9	59
33	Efficient polymer/nanocrystal hybrid solar cells fabricated from aqueous materials. Energy and Environmental Science, 2011, 4, 2831.	15.6	58
34	Inverted Hybrid Solar Cells from Aqueous Materials with a PCE of 3.61%. Advanced Energy Materials, 2013, 3, 433-437.	10.2	52
35	3D/2D Perovskite Single Crystals Heterojunction for Suppressed Ions Migration in Hard Xâ€Ray Detection. Advanced Functional Materials, 2021, 31, 2104880.	7.8	47
36	Photoluminescence from Radiative Surface States and Excitons in Methylammonium Lead Bromide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 4258-4263.	2.1	46

HAOTONG WEI

#	Article	IF	CITATIONS
37	Oriented 2D Perovskite Wafers for Anisotropic Xâ€ray Detection through a Fast Tableting Strategy. Advanced Materials, 2022, 34, e2108020.	11.1	43
38	Enhanced charge separation and photocatalytic hydrogen evolution in carbonized-polymer-dot-coupled lead halide perovskites. Materials Horizons, 2020, 7, 2719-2725.	6.4	38
39	Preparation of polymer–nanocrystals hybrid solar cells through aqueous approaches. Nano Today, 2012, 7, 316-326.	6.2	37
40	White-light emission nanofibers obtained from assembling aqueous single-colored CdTe NCs into a PPV precursor and PVA matrix. Journal of Materials Chemistry, 2009, 19, 6740.	6.7	35
41	Synthesis of a Waterâ€Soluble Conjugated Polymer Based on Thiophene for an Aqueousâ€Processed Hybrid Photovoltaic and Photodetector Device. Advanced Materials, 2014, 26, 3655-3661.	11.1	35
42	ls Formamidinium Always More Stable than Methylammonium?. Chemistry of Materials, 2020, 32, 2501-2507.	3.2	34
43	Unraveling Charge Separation and Transport Mechanisms in Aqueousâ€Processed Polymer/CdTe Nanocrystal Hybrid Solar Cells. Advanced Energy Materials, 2014, 4, 1301882.	10.2	33
44	Polyhydroxy Ester Stabilized Perovskite for Low Noise and Large Linear Dynamic Range of Self-Powered Photodetectors. Nano Letters, 2021, 21, 1500-1507.	4.5	33
45	Aqueous-Solution-Processed Hybrid Solar Cells from Poly(1,4-naphthalenevinylene) and CdTe Nanocrystals. ACS Applied Materials & Interfaces, 2011, 3, 2919-2923.	4.0	32
46	Valence band dispersion measurements of perovskite single crystals using angle-resolved photoemission spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 5361-5365.	1.3	32
47	Self-Assembly of CdTe Nanoparticles into Dendrite Structure: A Microsensor to Hg ²⁺ . Langmuir, 2011, 27, 1136-1142.	1.6	30
48	Metal Halide Perovskite Nanocrystal Solar Cells: Progress and Challenges. Small Methods, 2020, 4, 2000419.	4.6	30
49	Fine-control-valve of halide perovskite single crystal quality for high performance X-ray detection. Science Bulletin, 2021, 66, 2199-2206.	4.3	29
50	Synthesis of Cu _{2–<i>x</i>} Se Nanocrystals by Tuning the Reactivity of Se. Journal of Physical Chemistry C, 2011, 115, 9909-9916.	1.5	26
51	Aqueous-solution-processed hybrid solar cells with good thermal and morphological stability. Solar Energy Materials and Solar Cells, 2013, 109, 254-261.	3.0	26
52	Coordinatable and High Chargeâ€Carrierâ€Mobility Waterâ€Soluble Conjugated Copolymers for Effective Aqueousâ€Processed Polymer–Nanocrystal Hybrid Solar Cells and OFET Applications. Advanced Functional Materials, 2013, 23, 4035-4042.	7.8	26
53	Surface Ligands Management for Efficient CsPbBrl ₂ Perovskite Nanocrystal Solar Cells. Solar Rrl, 2020, 4, 2000102.	3.1	25
54	Development of Halide Perovskite Single Crystal for Radiation Detection Applications. Frontiers in Chemistry, 2020, 8, 268.	1.8	25

HAOTONG WEI

#	Article	IF	CITATIONS
55	Lowâ€Cost and Largeâ€Area Hybrid Xâ€Ray Detectors Combining Direct Perovskite Semiconductor and Indirect Scintillator. Advanced Functional Materials, 2021, 31, 2107843.	7.8	25
56	High-Efficiency Aqueous-Processed Hybrid Solar Cells with an Enormous Herschel Infrared Contribution. ACS Applied Materials & amp; Interfaces, 2014, 6, 8606-8612.	4.0	23
57	An effective method to prepare polymer/nanocrystal composites with tunable emission over the whole visible light range. Nano Research, 2010, 3, 496-505.	5.8	21
58	Aqueous-solution-processed PPV–CdxHg1â^'xTe hybrid solar cells with a significant near-infrared contribution. Journal of Materials Chemistry, 2012, 22, 17827.	6.7	20
59	Energy Transfer Assisted Fast Xâ€ray Detection in Direct/Indirect Hybrid Perovskite Wafer. Advanced Science, 2022, 9, e2103735.	5.6	20
60	High Quality CdHgTe Nanocrystals with Strong Near-Infrared Emission: Relationship between Composition and Cytotoxic Effects. Langmuir, 2013, 29, 4119-4127.	1.6	19
61	Intrinsic Behavior of CH ₃ NH ₃ PbBr ₃ Single Crystals under Light Illumination. Advanced Materials Interfaces, 2018, 5, 1801206.	1.9	18
62	Achieving high open-circuit voltage in the PPV-CdHgTe bilayer photovoltaic devices on the basis of the heterojunction interfacial modification. Journal of Materials Chemistry, 2012, 22, 9161.	6.7	16
63	Organic Amine-Bridged Quasi-2D Perovskite/PbS Colloidal Quantum Dots Composites for High-Gain Near-Infrared Photodetectors. Nano Letters, 2022, 22, 2277-2284.	4.5	16
64	Creation of Transparent Nanocomposite Films with a Refractive Index of 2.3 Using Polymerizable Silicon Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 653-657.	1.2	14
65	Aqueous-Processed Polymer/Nanocrystal Hybrid Solar Cells with Efficiency of 5.64%: The Impact of Device Structure, Polymer Content, and Film Thickness. Journal of Physical Chemistry C, 2017, 121, 2025-2034.	1.5	13
66	Supramolecular Interactions of Flexible 2D Perovskite in Microstrain Releasing and Optoelectronic Properties Recovery. Advanced Functional Materials, 2022, 32, .	7.8	13
67	A totally phosphine-free synthesis of metal telluride nanocrystals by employing alkylamides to replace alkylphosphines for preparing highly reactive tellurium precursors. Nanoscale, 2013, 5, 9593.	2.8	12
68	Correlation between Annealing-Induced Growth of Nanocrystals and the Performance of Polymer: Nanocrystals Hybrid Solar Cells. Journal of Physical Chemistry C, 2012, 116, 1322-1328.	1.5	10
69	Solvent co-assembly in lead-free perovskite scintillators for stable and large-area X-ray imaging. Journal of Materials Chemistry A, 2022, 10, 15990-15998.	5.2	8
70	POLYMER-NANOCRYSTALS COMPOSITE MATERIALS AND PERFORMANCE OPTIMIZATION. Acta Polymerica Sinica, 2011, 011, 939-949.	0.0	0
71	Polymer-Passivated Inorganic Cesium Lead Halide Perovskites for High-Voltage and High-Efficiency Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0