Vincenzo Picotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5876265/publications.pdf

Version: 2024-02-01

361296 315616 1,470 45 20 38 citations h-index g-index papers 57 57 57 1639 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Effects of the Pliensbachian–Toarcian Boundary Event on Carbonate Productivity of a Tethyan Platform and Slope. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	2
2	Deformation patterns of upper Quaternary strata and their relation to active tectonics, Po Basin, Italy. Sedimentology, 2021, 68, 402-424.	1.6	8
3	Biomarker constraints on Mediterranean climate and ecosystem transitions during the Early-Middle Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562, 110092.	1.0	3
4	Neogene kinematics of the Giudicarie Belt and eastern Southern Alpine orogenic front (northern) Tj ETQq0 0 0	rgBT /Over	lock 10 Tf 50 6
5	Stochastic alluvial fan and terrace formation triggered by a high-magnitude Holocene landslide in the Klados Gorge, Crete. Earth Surface Dynamics, 2021, 9, 771-793.	1.0	3
6	Controls on Physical and Chemical Denudation in a Mixed Carbonateâ€Siliciclastic Orogen. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006064.	1.0	6
7	Glacial Erosion Rates Determined at Vorab Glacier: Implications for the Evolution of Limestone Plateaus. Geosciences (Switzerland), 2021, 11, 356.	1.0	2
8	Holocene evolution of halite caves in the Cordillera de la Sal (Central Atacama, Chile) in different climate conditions. Geomorphology, 2020, 370, 107398.	1.1	10
9	Incorporating a Student-Centered Approach with Collaborative Learning into Methods in Quantitative Element Analysis. Journal of Chemical Education, 2020, 97, 3617-3623.	1.1	8
10	3â€D Architecture and Plioâ€Quaternary Evolution of the Paola Basin: Insights Into the Forearc of the Tyrrhenianâ€Ionian Subduction System. Tectonics, 2020, 39, e2019TC005898.	1.3	12
11	Birth and closure of the Kallipetra Basin: Late Cretaceous reworking of the Jurassic Pelagonian–Axios/Vardar contact (northern Greece). Solid Earth, 2020, 11, 2463-2485.	1.2	O
12	Change from rimmed to ramp platform forced by regional and global events in the Cretaceous of the Friuli-Adriatic Platform (Southern Alps, Italy). Cretaceous Research, 2019, 104, 104177.	0.6	9
13	Fluvial dynamics and ¹⁴ Câ€ ¹⁰ Be disequilibrium on the Bolivian Altiplano. Earth Surface Processes and Landforms, 2019, 44, 766-780.	1.2	8
14	Forensic investigations of the Cima Salti Landslide, northern Italy, using runout simulations. Geomorphology, 2018, 318, 172-186.	1.1	5
15	Postglacial evolution of a formerly glaciated valley: Reconstructing sediment supply, fan building, and confluence effects at the millennial time scale. Bulletin of the Geological Society of America, 2018, 130, 1457-1473.	1.6	15
16	High-resolution seismic imaging of debris-flow fans, alluvial valley fills and hosting bedrock geometry in Vinschgau/Val Venosta, Eastern Italian Alps. Journal of Applied Geophysics, 2018, 157, 61-72.	0.9	10
17	Jurassic stratigraphy of the Belluno Basin and Friuli Platform: a perspective on far-field compression in the Adria passive margin. Swiss Journal of Geosciences, 2017, 110, 833-850.	0.5	16
18	Gypsum caves as indicators of climate-driven river incision and aggradation in a rapidly uplifting region. Geology, 2015, 43, 539-542.	2.0	41

#	Article	IF	CITATIONS
19	A genetic model of hydrocarbon-derived carbonate chimneys in shelfal fine-grained sediments: The Enza River field, Northern Apennines (Italy). Marine and Petroleum Geology, 2015, 66, 555-565.	1.5	24
20	Spatial analysis of thickness variability applied to an Early Jurassic carbonate platform in the central Southern Alps (Italy): a tool to unravel synâ€sedimentary faulting. Terra Nova, 2014, 26, 239-246.	0.9	10
21	Effects of sediment mixing on 10Be concentrations in the Zielbach catchment, central-eastern Italian Alps. Quaternary Geochronology, 2014, 19, 148-162.	0.6	31
22	A new model of the petroleum system in the Northern Apennines, Italy. Marine and Petroleum Geology, 2013, 48, 57-76.	1.5	38
23	Fault slip rate variability on 104–105yr timescales for the Salsomaggiore blind thrust fault, Northern Apennines, Italy. Tectonophysics, 2013, 608, 356-365.	0.9	23
24	Earthflow sediment production and Holocene sediment record in a large Apennine catchment. Geomorphology, 2013, 188, 42-53.	1.1	41
25	Dating the Irrigation System of the Samarkand Oasis: A Geoarchaeological Study. Radiocarbon, 2012, 54, 91-105.	0.8	0
26	Spontaneous fluid emissions in the Northern Apennines: geochemistry, structures and implications for the petroleum system. Geological Society Special Publication, 2010, 348, 115-135.	0.8	23
27	Thrust-fold activity at the mountain front of the Northern Apennines (Italy) from quantitative landscape analysis. Geomorphology, 2010, 123, 211-231.	1.1	48
28	Topographic expression of active faults in the foothills of the Northern Apennines. Tectonophysics, 2009, 474, 285-294.	0.9	35
29	Messinian climate change and erosional destruction of the central European Alps: COMMENT AND REPLY: REPLY. Geology, 2007, 35, e131-e131.	2.0	1
30	Integrated stratigraphy (radiolarians and calcareous nannofossils) of the Middle to Upper Jurassic Alpine radiolarites (Lombardian Basin, Italy): Constraints to their genetic interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 249, 233-270.	1.0	26
31	Productivity-generated annual laminae in mid-Pliocene sapropels deposited during precessionally forced periods of warmer Mediterranean climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 235, 208-222.	1.0	13
32	Messinian climate change and erosional destruction of the central European Alps. Geology, 2006, 34, 613.	2.0	154
33	Mid-Pliocene warm climate and annual primary productivity peaks recorded in sapropel deposition. Climate Research, 2006, 31, 137-144.	0.4	3
34	Comment on: "Uplift and contractional deformation along a segmented strike-slip fault system: the Gargano Promontory, southern Italyâ€-by C.M. Brankman and A. Aydin[Journal of Structural Geology, 26, 807–824]. Journal of Structural Geology, 2004, 26, 2325-2326.	1.0	2
35	Pliocene sequence stratigraphy, climatic trends and sapropel formation in the Northern Apennines (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 190, 349-371.	1.0	45
36	Pliocene and Pleistocene exhumation and uplift of two key areas of the Northern Apennines. Quaternary International, 2003, 101-102, 67-73.	0.7	73

3

#	Article	IF	CITATIONS
37	Fluid migration and origin of a mud volcano in the Northern Apennines (Italy): the role of deeply rooted normal faults. Terra Nova, 2002, 14, 363-370.	0.9	70
38	Neogene to Quaternary sedimentary basins in the south Adriatic (Central Mediterranean): Foredeeps and lithospheric buckling. Tectonics, 2001, 20, 771-787.	1.3	73
39	Sedimentary and biological response to sea-level and palaeoceanographic changes of a Lower–Middle Jurassic Tethyan platform margin (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169, 219-244.	1.0	70
40	Discriminating between tectonic and sedimentary burial in a foredeep succession, Northern Apennines. Journal of the Geological Society, 2000, 157, 629-633.	0.9	39
41	Lithospheric weakening during "retroforeland―basin formation: Tectonic evolution of the central South Alpine foredeep. Tectonics, 1998, 17, 131-142.	1.3	20
42	Extension controls Quaternary tectonics, geomorphology and sedimentation of the N-Appennies foothills and adjacent Po Plain (Italy). Tectonophysics, 1997, 282, 291-301.	0.9	76
43	Thermomechanical evolution of the South Alpine rifted margin (North Italy): constraints on the strength of passive continental margins. Earth and Planetary Science Letters, 1997, 146, 181-193.	1.8	48
44	From rifting to drifting: tectonic evolution of the South-Alpine upper crust from the Triassic to the Early Cretaceous. Sedimentary Geology, 1993, 86, 53-76.	1.0	293
45	Microseismic Portrait of the Montello Thrust (Southeastern Alps, Italy) from a Dense Highâ€Quality Seismic Network. Seismological Research Letters, 0, , .	0.8	14