
Wenbin Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5876036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nature Biotechnology, 2013, 31, 54-62.	9.4	274
2	SHOX2 Overexpression Favors Differentiation of Embryonic Stem Cells into Cardiac Pacemaker Cells, Improving Biological Pacing Ability. Stem Cell Reports, 2015, 4, 129-142.	2.3	107
3	Injectable human recombinant collagen matrices limit adverse remodeling and improve cardiac function after myocardial infarction. Nature Communications, 2019, 10, 4866.	5.8	103
4	Nanoengineered Electroconductive Collagen-Based Cardiac Patch for Infarcted Myocardium Repair. ACS Applied Materials & Interfaces, 2018, 10, 44668-44677.	4.0	77
5	Canonical Wnt signaling promotes pacemaker cell specification of cardiac mesodermal cells derived from mouse and human embryonic stem cells. Stem Cells, 2020, 38, 352-368.	1.4	55
6	Wnt signalling suppresses voltageâ€dependent Na ⁺ channel expression in postnatal rat cardiomyocytes. Journal of Physiology, 2015, 593, 1147-1157.	1.3	31
7	Role of Phosphoinositide 3-Kinase α, Protein Kinase C, and L-Type Ca ²⁺ Channels in Mediating the Complex Actions of Angiotensin II on Mouse Cardiac Contractility. Hypertension, 2010, 56, 422-429.	1.3	25
8	Swelling-activated Clâ^' currents and intracellular CLC-3 are involved in proliferation of human pulmonary artery smooth muscle cells. Journal of Hypertension, 2014, 32, 318-330.	0.3	24
9	Deterministic paracrine repair of injured myocardium using microfluidic-based cocooning of heart explant-derived cells. Biomaterials, 2020, 247, 120010.	5.7	16
10	Catharanthine Dilates Small Mesenteric Arteries and Decreases Heart Rate and Cardiac Contractility by Inhibition of Voltage-Operated Calcium Channels on Vascular Smooth Muscle Cells and Cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 2013, 345, 383-392.	1.3	14
11	ATP-sensitive K+ channels and mitochondrial permeability transition pore mediate effects of hydrogen sulfide on cytosolic Ca2+ homeostasis and insulin secretion in β-cells. Pflugers Archiv European Journal of Physiology, 2019, 471, 1551-1564.	1.3	14
12	Direct and Indirect Suppression of Scn5a Gene Expression Mediates Cardiac Na+ Channel Inhibition by Wnt Signalling. Canadian Journal of Cardiology, 2020, 36, 564-576.	0.8	12
13	GATA6 is a regulator of sinus node development and heart rhythm. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
14	<i>De Novo</i> Human Cardiac Myocytes for Medical Research: Promises and Challenges. Stem Cells International, 2017, 2017, 1-7.	1.2	10
15	Glyoxalase 1 Prevents Chronic Hyperglycemia Induced Heart-Explant Derived Cell Dysfunction. Theranostics, 2019, 9, 5720-5730.	4.6	10
16	BEaTS-α an open access 3D printed device for in vitro electromechanical stimulation of human induced pluripotent stem cells. Scientific Reports, 2020, 10, 11274.	1.6	9
17	Role of mitochondrial Ca ²⁺ uniporter in remifentanilâ€induced postoperative allodynia. European Journal of Neuroscience, 2018, 47, 305-313.	1.2	6
18	Disease modeling of cardiac arrhythmias using human induced pluripotent stem cells. Expert Opinion on Biological Therapy, 2019, 19, 313-333.	1.4	6

WENBIN LIANG

#	Article	IF	CITATIONS
19	Bmiâ€l highâ€expressing cells enrich cardiac stem/progenitor cells and respond to heart injury. Journal of Cellular and Molecular Medicine, 2019, 23, 104-111.	1.6	5
20	Nanoengineered Sprayable Therapy for Treating Myocardial Infarction. ACS Nano, 2022, 16, 3522-3537.	7.3	5
21	zâ€Wire: A Microscaffold That Supports Guided Tissue Assembly and Intramyocardium Delivery for Cardiac Repair. Advanced Healthcare Materials, 2020, 9, 2000358.	3.9	4
22	Cardiomyocyte-specific deletion of β-catenin protects mouse hearts from ventricular arrhythmias after myocardial infarction. Scientific Reports, 2021, 11, 17722.	1.6	4
23	Inhibition of β-catenin Increases Voltage-gated Na ⁺ Current in Brugada Syndrome Cardiomyocytes. SSRN Electronic Journal, 0, , .	0.4	1
24	Induced Pluripotent Stem Cell–Based Treatment of Acquired Heart Block. Circulation: Arrhythmia and Electrophysiology, 2017, 10, e005331.	2.1	0
25	Cardiovascular Regeneration: Biology and Therapy. Stem Cells International, 2017, 2017, 1-2.	1.2	0
26	Disease Modelling and Precision Medicine Using Canadian Cardiomyocytes. Canadian Journal of Cardiology, 2020, 36, 467-469.	0.8	0