Sara Pourshahrestani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5875769/publications.pdf

Version: 2024-02-01

687363 794594 19 914 13 19 citations h-index g-index papers 19 19 19 1124 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Advanced Healthcare Materials, 2020, 9, e2000905.	7.6	194
2	Inorganic hemostats: The state-of-the-art and recent advances. Materials Science and Engineering C, 2016, 58, 1255-1268.	7.3	124
3	Gallium-containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy. Journal of Materials Chemistry B, 2016, 4, 71-86.	5.8	121
4	Potency and Cytotoxicity of a Novel Gallium-Containing Mesoporous Bioactive Glass/Chitosan Composite Scaffold as Hemostatic Agents. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31381-31392.	8.0	95
5	Bioactive glass reinforced elastomer composites for skeletal regeneration: A review. Materials Science and Engineering C, 2015, 53, 175-188.	7.3	73
6	Well-ordered mesoporous silica and bioactive glasses: promise for improved hemostasis. Biomaterials Science, 2019, 7, 31-50.	5.4	73
7	Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomaterialia, 2021, 136, 1-36.	8.3	61
8	Fabrication and characterization of poly(octanediol citrate)/gallium-containing bioglass microcomposite scaffolds. Journal of Materials Science, 2015, 50, 2189-2201.	3.7	28
9	Antibacterial properties of poly (octanediol citrate)/gallium-containing bioglass composite scaffolds. Journal of Materials Science: Materials in Medicine, 2016, 27, 18.	3.6	25
10	Comparative efficacy of hemorrhage control of a novel mesoporous bioactive glass versus two commercial hemostats. Biomedical Materials (Bristol), 2018, 13, 025020.	3.3	23
11	Bismuth triflate, Bi(OTf)3, as an efficient and reusable catalyst for synthesis of dihydropyrano[3,2-b]chromenediones. Journal of the Iranian Chemical Society, 2015, 12, 573-580.	2.2	15
12	Osteogenic differentiation of mesenchymal stem cells on a poly (octanediol citrate)/bioglass composite scaffold in vitro. Materials and Design, 2016, 109, 434-442.	7.0	15
13	Elastomeric biocomposite of silver-containing mesoporous bioactive glass and poly(1,8-octanediol) Tj ETQq1 1 0. Materials Science and Engineering C, 2019, 98, 1022-1033.).784314 rg 7.3	rgBT /Overlock 15
14	Development of poly (1, 8-octanediol citrate)/chitosan blend films for tissue engineering applications. Carbohydrate Polymers, 2017, 175, 618-627.	10.2	13
15	Hydrothermal synthesis of carbon microspheres from sucrose with citric acid as a catalyst: physicochemical and structural properties. Journal of Taibah University for Science, 2020, 14, 1042-1050.	2.5	13
16	Hydrothermal synthesis and characterisation of bioactive glass-ceramic nanorods. Journal of Non-Crystalline Solids, 2016, 443, 118-124.	3.1	11
17	Selfâ∈Healing Polyester Urethane Supramolecular Elastomers Reinforced with Cellulose Nanocrystals for Biomedical Applications. Macromolecular Bioscience, 2019, 19, e1900176.	4.1	9
18	Engineering stiffness in highly porous biomimetic gelatin/tertiary bioactive glass hybrid scaffolds using graphene nanosheets. Reactive and Functional Polymers, 2020, 154, 104668.	4.1	4

#	Article	IF	CITATIONS
19	Synthesis and Characterization of Supramolecular Elastomers from Polyacids Composed of Vegetal Oils. Advanced Materials Research, 2013, 747, 505-508.	ole 0.3	2