Jing-hui Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5875660/publications.pdf

Version: 2024-02-01

96 papers 3,866 citations

32 h-index 58 g-index

96 all docs

96 docs citations

96 times ranked 3754 citing authors

#	Article	IF	CITATIONS
1	Largely Enhanced Thermal Conductivity and High Dielectric Constant of Poly(vinylidene) Tj ETQq1 1 0.784314 rgB Chemistry C, 2016, 120, 6344-6355.		k 10 Tf 50 7 204
2	Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities. Chemical Engineering Journal, 2019, 365, 20-29.	6.6	190
3	Largely enhanced thermal conductivity of poly(vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide. Carbon, 2015, 90, 242-254.	5.4	175
4	Direct Formation of Nanohybrid Shish-Kebab in the Injection Molded Bar of Polyethylene/Multiwalled Carbon Nanotubes Composite. Macromolecules, 2009, 42, 7016-7023.	2.2	159
5	Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents. Journal of Hazardous Materials, 2017, 335, 28-38.	6.5	156
6	A simple strategy to achieve very low percolation threshold via the selective distribution of carbon nanotubes at the interface of polymer blends. Journal of Materials Chemistry, 2012, 22, 22398.	6.7	141
7	Melamine Foam-Supported Form-Stable Phase Change Materials with Simultaneous Thermal Energy Storage and Shape Memory Properties for Thermal Management of Electronic Devices. ACS Applied Materials & Electronic Characterists (2019, 11, 19252-19259).	4.0	122
8	Blend-electrospun poly(vinylidene fluoride)/polydopamine membranes: self-polymerization of dopamine and the excellent adsorption/separation abilities. Journal of Materials Chemistry A, 2017, 5, $14430-14443$.	5.2	115
9	Electrospun Fibrous Membranes with Dual-Scaled Porous Structure: Super Hydrophobicity, Super Lipophilicity, Excellent Water Adhesion, and Anti-Icing for Highly Efficient Oil Adsorption/Separation. ACS Applied Materials & Diterfaces, 2019, 11, 5073-5083.	4.0	111
10	Novel Flexible Phase Change Materials with Mussel-Inspired Modification of Melamine Foam for Simultaneous Light-Actuated Shape Memory and Light-to-Thermal Energy Storage Capability. ACS Sustainable Chemistry and Engineering, 2019, 7, 13532-13542.	3.2	108
11	Bio-inspired functionalization of microcrystalline cellulose aerogel with high adsorption performance toward dyes. Carbohydrate Polymers, 2018, 198, 546-555.	5.1	100
12	Multiresponsive Shape-Adaptable Phase Change Materials with Cellulose Nanofiber/Graphene Nanoplatelet Hybrid-Coated Melamine Foam for Light/Electro-to-Thermal Energy Storage and Utilization. ACS Applied Materials & Description (2019), 11, 46851-46863.	4.0	98
13	Excellent dielectric properties of poly(vinylidene fluoride) composites based on partially reduced graphene oxide. Composites Part B: Engineering, 2017, 109, 91-100.	5.9	95
14	Constructing reduced graphene oxide/boron nitride frameworks in melamine foam towards synthesizing phase change materials applied in thermal management of microelectronic devices. Nanoscale, 2019, 11, 18691-18701.	2.8	82
15	Compatibilization of immiscible nylon 6/poly(vinylidene fluoride) blends using graphene oxides. Polymer International, 2013, 62, 1085-1093.	1.6	81
16	Selective localization of carbon nanotubes at the interface of Poly(L-lactide)/Ethylene-co-vinyl Acetate resulting in lowered electrical resistivity. Composites Part B: Engineering, 2013, 55, 463-469.	5.9	78
17	Multifunctional Phase Change Composites Based on Elastic MXene/Silver Nanowire Sponges for Excellent Thermal/Solar/Electric Energy Storage, Shape Memory, and Adjustable Electromagnetic Interference Shielding Functions. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6057-6070.	4.0	77
18	Melamine foam and cellulose nanofiber co-mediated assembly of graphene nanoplatelets to construct three-dimensional networks towards advanced phase change materials. Nanoscale, 2020, 12, 4005-4017.	2.8	74

#	Article	IF	CITATIONS
19	Excellent Electroactive Shape Memory Performance of EVA/PCL/CNT Blend Composites with Selectively Localized CNTs. Journal of Physical Chemistry C, 2016, 120, 22793-22802.	1.5	64
20	Electrically/infrared actuated shape memory composites based on a bio-based polyester blend and graphene nanoplatelets and their excellent self-driven ability. Journal of Materials Chemistry C, 2017, 5, 4145-4158.	2.7	63
21	Flexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistance. Journal of Materials Chemistry A, 2021, 9, 5033-5044.	5.2	57
22	Super toughening of the poly(l-lactide)/thermoplastic polyurethane blends by carbon nanotubes. RSC Advances, 2013, 3, 26271.	1.7	56
23	Selective localization of carbon nanotubes and its effect on the structure and properties of polymer blends. Progress in Polymer Science, 2021, 123, 101471.	11.8	55
24	One-step fabrication of functionalized poly(l-lactide) porous fibers by electrospinning and the adsorption/separation abilities. Journal of Hazardous Materials, 2018, 360, 150-162.	6.5	52
25	Accelerated hydrolytic degradation of poly(lactic acid) achieved by adding poly(butylene succinate). Polymer Bulletin, 2016, 73, 1067-1083.	1.7	51
26	Effect of organoclay on morphology and electrical conductivity of PC/PVDF/CNT blend composites. Composites Science and Technology, 2014, 94, 30-38.	3.8	49
27	Grafting of polystyrene onto reduced graphene oxide by emulsion polymerization for dielectric polymer composites: High dielectric constant and low dielectric loss tuned by varied grafting amount of polystyrene. European Polymer Journal, 2017, 94, 196-207.	2.6	47
28	Electrical properties of poly(phenylene sulfide)/multiwalled carbon nanotube composites prepared by simple mixing and compression. Journal of Applied Polymer Science, 2008, 109, 720-726.	1.3	43
29	Constructing cellulose nanocrystal/graphene nanoplatelet networks in phase change materials toward intelligent thermal management. Carbohydrate Polymers, 2021, 253, 117290.	5.1	43
30	Selective localization of reduced graphene oxides at the interface of PLA/EVA blend and its resultant electrical resistivity. Polymer Composites, 2017, 38, 1982-1991.	2.3	39
31	Trapping carbon nanotubes at the interface of a polymer blend through adding graphene oxide: a facile strategy to reduce electrical resistivity. Journal of Materials Chemistry C, 2013, 1, 7808.	2.7	36
32	Fabrication of sandwich-structured PPy/MoS2/PPy nanosheets for polymer composites with high dielectric constant, low loss and high breakdown strength. Composites Part A: Applied Science and Manufacturing, 2020, 137, 106032.	3.8	35
33	Synergistic effect of poly(ethylene glycol) and graphene oxides on the crystallization behavior of poly(<scp>l</scp> â€lactide). Journal of Applied Polymer Science, 2013, 130, 3498-3508.	1.3	33
34	Achieving Large Dielectric Property Improvement in Poly(ethylene vinyl acetate)/Thermoplastic Polyurethane/Multiwall Carbon Nanotube Nanocomposites by Tailoring Phase Morphology. Industrial & Engineering Chemistry Research, 2017, 56, 3607-3617.	1.8	32
35	Thermal and electroactive shape memory behaviors of poly(<scp>l</scp> -lactide)/thermoplastic polyurethane blend induced by carbon nanotubes. RSC Advances, 2015, 5, 101455-101465.	1.7	30
36	Polypyrrole/Helical Carbon Nanotube Composite with Marvelous Photothermoelectric Performance for Longevous and Intelligent Internet of Things Application. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8808-8822.	4.0	29

#	Article	IF	CITATIONS
37	Realizing the full nanofiller enhancement in melt-spun fibers of poly(vinylidene fluoride)/carbon nanotube composites. Nanotechnology, 2011, 22, 355707.	1.3	28
38	Carbon nanotubes accelerated poly(vinylidene fluoride) crystallization from miscible poly(vinylidene) Tj ETQq0 C Polymer Journal, 2015, 68, 175-189.	0 rgBT /0 2.6	Overlock 10 Tf 27
39	Graphite oxide-driven miscibility in PVDF/PMMA blends: Assessment through dynamic rheology method. European Polymer Journal, 2017, 96, 232-247.	2.6	27
40	Ultraflexible PEDOT:PSS/Helical Carbon Nanotubes Film for All-in-One Photothermoelectric Conversion. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27083-27095.	4.0	25
41	Largely improved fracture toughness of an immiscible poly(<scp>l</scp> -lactide)/ethylene-co-vinyl acetate blend achieved by adding carbon nanotubes. RSC Advances, 2015, 5, 69522-69533.	1.7	24
42	Achieving electrical insulation, high thermal conductivity and high fracture toughness in polyamide 6/carbon nanofiber composites through the interfacial welding effect of elastomer. Composites Part A: Applied Science and Manufacturing, 2020, 128, 105671.	3.8	24
43	Constructing a Microcapacitor Network of Carbon Nanotubes in Polymer Blends via Crystallization-Induced Phase Separation Toward High Dielectric Constant and Low Loss. ACS Applied Materials & Interfaces, 2020, 12, 26444-26454.	4.0	23
44	Construction of a 3D interconnected boron nitride nanosheets in a PDMS matrix for high thermal conductivity and high deformability. Composites Science and Technology, 2022, 226, 109528.	3.8	23
45	Highly improved crystallization behavior of poly(L″actide) induced by a novel nucleating agent: substitutedâ€aryl phosphate salts. Polymers for Advanced Technologies, 2013, 24, 42-50.	1.6	22
46	Comparative study of poly(<scp>L</scp> â€lactide) nanocomposites with organic montmorillonite and carbon nanotubes. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 183-196.	2.4	22
47	Morphology and property changes of immiscible polycarbonate/poly(<scp>L</scp> ″actide) blends induced by carbon nanotubes. Polymer International, 2013, 62, 957-965.	1.6	22
48	Triple-Shape Memory Materials Based on Cross-Linked Poly(ethylene vinyl acetate) and Poly(ε-caprolactone). Industrial & Engineering Chemistry Research, 2016, 55, 12232-12241.	1.8	22
49	Greatly enhanced hydrolytic degradation ability of poly(L-lactide) achieved by adding poly(ethylene) Tj ETQq1 1	0.784314 2.0	rgBT/Overlo
50	Fabrication of Ag@BaTiO3 hybrid nanofibers via coaxial electrospinning toward polymeric composites with highly enhanced dielectric performances. Composites Communications, 2020, 21, 100411.	3.3	22
51	Super toughened immiscible polycarbonate/poly(l-lactide) blend achieved by simultaneous addition of compatibilizer and carbon nanotubes. RSC Advances, 2014, 4, 59194-59203.	1.7	21
52	Highly thermally conductive epoxy composites with anti-friction performance achieved by carbon nanofibers assisted graphene nanoplatelets assembly. European Polymer Journal, 2021, 151, 110443.	2.6	21
53	Effect of graphene oxides on thermal degradation and crystallization behavior of poly(<scp>I</scp> -lactide). RSC Advances, 2014, 4, 3443-3456.	1.7	20
54	Tailoring the hybrid network structure of boron nitride/carbon nanotube to achieve thermally conductive poly(vinylidene fluoride) composites. Composites Communications, 2019, 13, 30-36.	3.3	19

#	Article	IF	CITATIONS
55	Crystal morphology and transcrystallization mechanism of isotactic polypropylene induced by fibres: interface nucleationversus bulk nucleation. Polymer International, 2006, 55, 441-448.	1.6	18
56	Crystallization behavior of isotactic polypropylene induced by competition action of \hat{l}^2 nucleating agent and high pressure. Colloid and Polymer Science, 2012, 290, 531-540.	1.0	18
57	Achieving high performance poly(vinylidene fluoride) dielectric composites <i>via in situ</i> polymerization of polypyrrole nanoparticles on hydroxylated BaTiO ₃ particles. Chemical Science, 2019, 10, 8224-8235.	3.7	18
58	Annealing-induced crystalline structure and mechanical property changes of polypropylene random copolymer. Journal of Materials Research, 2013, 28, 3100-3108.	1.2	17
59	Amplified Toughening Effect of Annealing on Isotactic Polypropylene Realized by Introducing Microvoids. Industrial & Engineering Chemistry Research, 2014, 53, 4679-4688.	1.8	17
60	Fabrication of highâ€∢i>k∢/i> poly(vinylidene fluoride)/Nylon 6/carbon nanotube nanocomposites through selective localization of carbon nanotubes in blends. Polymer International, 2017, 66, 604-611.	1.6	17
61	Nuomici-Inspired Universal Strategy for Boosting Piezoresistive Sensitivity and Elasticity of Polymer Nanocomposite-Based Strain Sensors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35362-35370.	4.0	16
62	Constructing a segregated carbon nanotube network in polyamide-based composites towards high dielectric constant and low loss. Materials Letters, 2019, 245, 204-207.	1.3	16
63	Crystallization and melting behaviors of polypropylene admixed by graphene and \hat{l}^2 -phase nucleating agent. Colloid and Polymer Science, 2014, 292, 923-933.	1.0	15
64	Annealing induced microstructure and mechanical property changes of impact resistant polypropylene copolymer. Chinese Journal of Polymer Science (English Edition), 2015, 33, 1211-1224.	2.0	15
65	Rheology and non-isothermal crystallization behaviors of poly(butylene succinate)/graphene oxide composites. Colloid and Polymer Science, 2015, 293, 389-400.	1.0	15
66	CF4 plasma-induced grafting of fluoropolymer onto multi-walled carbon nanotube powder. Applied Physics A: Materials Science and Processing, 2008, 90, 431-435.	1.1	14
67	High speed injection molding of high density polyethylene â€" Effects of injection speed on structure and properties. Chinese Journal of Polymer Science (English Edition), 2011, 29, 456-464.	2.0	14
68	Nonisothermal crystallization and multiple melting behaviors of βâ€nucleated impactâ€resistant polypropylene copolymer. Journal of Applied Polymer Science, 2012, 126, 1031-1043.	1.3	14
69	Carbon nanotubes induced poly(vinylidene fluoride) crystallization from a miscible poly(vinylidene) Tj ETQq1 :	l 0.784314 r 1.0	gBT ₄ Overlo
70	Super Toughened Poly(L-lactide)/Thermoplastic Polyurethane Blends Achieved by Adding Dicumyl Peroxide. Polymer-Plastics Technology and Engineering, 2014, 53, 1344-1353.	1.9	14
71	Preparation of hybrid graphene oxide/nanoâ€silica nanofillers and their application in poly(vinyl) Tj ETQq1 1 0.	784314 rgB 2.3	T /Qyerlock 1
72	Structural relaxation and dielectric response of PVDF/PMMA blend in the presence of graphene oxide. Polymer, 2021, 229, 123998.	1.8	14

#	Article	IF	CITATIONS
73	Combined effect of compatibilizer and carbon nanotubes on the morphology and electrical conductivity of PP/PS blend. Polymers for Advanced Technologies, 2014, 25, 624-630.	1.6	13
74	Tuning the interaction of an immiscible poly(<scp>l</scp> -lactide)/poly(vinylidene fluoride) blend by adding poly(methyl methacrylate) via a competition mechanism and the resultant mechanical properties. RSC Advances, 2014, 4, 40569-40579.	1.7	13
75	Largely improved tensile extensibility of poly(<scp>L</scp> â€lactic acid) by adding poly(Îμâ€caprolactone). Polymer International, 2010, 59, 1154-1161.	1.6	12
76	Crystallization of poly(l-lactide) in the miscible poly(l-lactide)/poly(vinyl acetate) blend induced by carbon nanotubes. Polymer Bulletin, 2018, 75, 2641-2655.	1.7	12
77	Fabricating High-Thermal-Conductivity, High-Strength, and High-Toughness Polylactic Acid-Based Blend Composites <i>via</i> Constructing Multioriented Microstructures. Biomacromolecules, 2022, 23, 1789-1802.	2.6	12
78	Greatly enhanced porosity of stretched polypropylene/graphene oxide composite membrane achieved by adding pore-forming agent. RSC Advances, 2015, 5, 20663-20673.	1.7	11
79	Largely restricted nucleation effect of carbon nanotubes in a miscible poly(vinylidene) Tj ETQq1 1 0.784314 rgBT	/Overlock (1.6	10 Tf 50 50
80	Multi-directionally thermal conductive epoxy/boron nitride composites based on circinate vane type network. Composites Communications, 2021, 25, 100744.	3.3	11
81	Highly anisotropic thermal and electrical conductivities of nylon composite papers with the integration of strength and toughness. Journal of Materials Chemistry A, 2021, 9, 22982-22993.	5.2	11
82	Simultaneously Improved Dielectric Constant and Breakdown Strength of PVDF-based Composites with Polypyrrole Nanowire Encapsuled Molybdenum Disulfide Nanosheets. Chinese Journal of Polymer Science (English Edition), 2022, 40, 515-525.	2.0	11
83	Improving the Performance of Dielectric Nanocomposites by Utilizing Highly Conductive Rigid Core and Extremely Low Loss Shell. Journal of Physical Chemistry C, 2020, 124, 12883-12896.	1.5	10
84	Toughening effect of poly(methyl methacrylate) on an immiscible poly(vinylidene fluoride)/polylactide blend. Polymer International, 2016, 65, 675-682.	1.6	9
85	Enhancing chain segments mobility to improve the fracture toughness of polypropylene. Chinese Journal of Polymer Science (English Edition), 2013, 31, 232-241.	2.0	8
86	Constructing the core–shell structured island domain in polymer blends to achieve high dielectric constant and low loss. Polymer International, 2020, 69, 228-238.	1.6	8
87	Plasma treatmentâ€induced fluorineâ€functionalized multiâ€walled carbon nanotubes to modify poly(ethylene terephthalate) obtained via ⟨i⟩in situ⟨/i⟩ polymerization. Polymer International, 2010, 59, 198-203.	1.6	7
88	High hydrophilicity and excellent adsorption ability of a stretched polypropylene/graphene oxide composite membrane achieved by plasma assisted surface modification. RSC Advances, 2015, 5, 71240-71252.	1.7	7
89	Synchronously enhanced thermal properties and fracture toughness of epoxy composites through melamine foam templated dispersion of carbon nanofibers. Composites Communications, 2021, 28, 100977.	3.3	7
90	Well dispersion of rGOs in PLLA matrix mediated by incorporation of EVA and its resultant electrical property. Polymer Composites, 2014, 35, 1051-1059.	2.3	5

#	Article	IF	CITATION
91	Crystallization behavior of sorbitol derivative nucleated polypropylene block copolymer under high pressure. Colloid and Polymer Science, 2013, 291, 2213-2223.	1.0	4
92	Largely enhanced effective porosity of uniaxial stretched polypropylene membrane achieved by pore-forming agent. Journal of Polymer Research, 2016, 23, 1.	1.2	4
93	Modification of polycarbonate by adding poly(<scp>L</scp> â€lactide). Journal of Applied Polymer Science, 2013, 127, 3333-3339.	1.3	3
94	Largely improved crystallization behavior and thermal stability of poly(<scp>L</scp> â€lactide) via the synergistic effects of graphene oxide and carbon nanotubes. Journal of Applied Polymer Science, 2014, 131, .	1.3	2
95	Fracture Behavior of Poly(trimethylene terephthalate) Toughened by Maleic Anhydride Grafted Styrene-Ethylene-Butadiene-Styrene Block Copolymer. Polymer-Plastics Technology and Engineering, 2014, 53, 824-833.	1.9	1
96	Effect of PEO crystallization on dielectric response of PVDF / PEO @ IL coaxial electrospinning nanofiber films. Journal of Applied Polymer Science, 2022, 139, 51832.	1.3	0