Susumu S Sawada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5875597/publications.pdf

Version: 2024-02-01

88	2,875	20	52
papers	citations	h-index	g-index
91	91	91	3974 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation, 2016, 134, e653-e699.	1.6	1,423
2	Calf circumference as a surrogate marker of muscle mass for diagnosing sarcopenia in <scp>J</scp> apanese men and women. Geriatrics and Gerontology International, 2015, 15, 969-976.	0.7	267
3	Cardiorespiratory Fitness and the Incidence of Type 2 Diabetes: Prospective study of Japanese men. Diabetes Care, 2003, 26, 2918-2922.	4.3	149
4	Muscle-strengthening activities are associated with lower risk and mortality in major non-communicable diseases: a systematic review and meta-analysis of cohort studies. British Journal of Sports Medicine, 2022, 56, 755-763.	3.1	67
5	FIVE YEAR PROSPECTIVE STUDY ON BLOOD PRESSURE AND MAXIMAL OXYGEN UPTAKE. Clinical and Experimental Pharmacology and Physiology, 1993, 20, 483-487.	0.9	65
6	Long-Term Trends in Cardiorespiratory Fitness and the Incidence of Type 2 Diabetes. Diabetes Care, 2010, 33, 1353-1357.	4.3	65
7	Cardiorespiratory Fitness and Cancer Mortality in Japanese Men: A Prospective Study. Medicine and Science in Sports and Exercise, 2003, 35, 1546-1550.	0.2	63
8	Associations between Cardiorespiratory Fitness and Health-Related Quality of Life. Health and Quality of Life Outcomes, 2009, 7, 47.	1.0	62
9	Associations of sedentary behavior and physical activity with psychological distress: a cross-sectional study from Singapore. BMC Public Health, 2013, 13, 885.	1.2	56
10	Relation Between Insulin Sensitivity and Metabolic Abnormalities in Japanese Men With BMI of 23–25 kg/m ² . Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3676-3684.	1.8	54
11	Daily step count and all-cause mortality in a sample of Japanese elderly people: a cohort study. BMC Public Health, 2018, 18, 540.	1.2	49
12	Cutâ€offs for calf circumference as a screening tool for low muscle mass: <scp>WASEDA'S</scp> Health Study. Geriatrics and Gerontology International, 2020, 20, 943-950.	0.7	44
13	Physical Fitness Tests and Type 2 Diabetes Among Japanese: A Longitudinal Study From the Niigata Wellness Study. Journal of Epidemiology, 2019, 29, 139-146.	1.1	37
14	Cardiorespiratory fitness, body mass index, and cancer mortality: a cohort study of Japanese men. BMC Public Health, 2014, 14, 1012.	1.2	31
15	Cardiorespiratory Fitness Suppresses Ageâ€Related Arterial Stiffening in Healthy Adults: A 2â€Year Longitudinal Observational Study. Journal of Clinical Hypertension, 2016, 18, 292-298.	1.0	31
16	Body Mass Index and Kidney Stones: A Cohort Study of Japanese Men. Journal of Epidemiology, 2016, 26, 131-136.	1.1	30
17	Mediating Effect of Perceived Stress on the Association between Physical Activity and Sleep Quality among Chinese College Students. International Journal of Environmental Research and Public Health, 2021, 18, 289.	1.2	28
18	Dose–response relationship between sports activity and musculoskeletal pain in adolescents. Pain, 2016, 157, 1339-1345.	2.0	27

#	Article	IF	CITATIONS
19	Muscular and Performance Fitness and the Incidence of Type 2 Diabetes: Prospective Study of Japanese Men. Journal of Physical Activity and Health, 2010, 7, 627-632.	1.0	24
20	Obesity and low back pain: a retrospective cohort study of Japanese males. Journal of Physical Therapy Science, 2017, 29, 978-983.	0.2	24
21	A Fit-Fat Index for Predicting Incident Diabetes in Apparently Healthy Men: A Prospective Cohort Study. PLoS ONE, 2016, 11, e0157703.	1.1	24
22	Changes in Physical Fitness during COVID-19 Pandemic Lockdown among Adolescents: A Longitudinal Study. Healthcare (Switzerland), 2022, 10, 351.	1.0	20
23	Reference Values for Cardiorespiratory Fitness and Incidence of Type 2 Diabetes. Journal of Epidemiology, 2014, 24, 25-30.	1.1	15
24	Relationship between Cardiorespiratory Fitness and Non-High-Density Lipoprotein Cholesterol: A Cohort Study. Journal of Atherosclerosis and Thrombosis, 2018, 25, 1196-1205.	0.9	15
25	Long-term Impact of Cardiorespiratory Fitness on Type 2 Diabetes Incidence: A Cohort Study of Japanese Men. Journal of Epidemiology, 2018, 28, 266-273.	1.1	14
26	Association between objectively measured physical activity and body mass index with low back pain: a large-scale cross-sectional study of Japanese men. BMC Public Health, 2018, 18, 341.	1.2	13
27	Physical Fitness and Dyslipidemia Among Japanese: A Cohort Study From the Niigata Wellness Study. Journal of Epidemiology, 2021, 31, 287-296.	1.1	12
28	Consistently High Level of Cardiorespiratory Fitness and Incidence of Type 2 Diabetes. Medicine and Science in Sports and Exercise, 2017, 49, 2048-2055.	0.2	11
29	Combined association of cardiorespiratory fitness and family history of hypertension on the incidence of hypertension: a long-term cohort study of Japanese males. Hypertension Research, 2018, 41, 1063-1069.	1.5	11
30	A Prospective Cohort Study of Muscular and Performance Fitness and Risk of Hearing Loss: The Niigata Wellness Study. American Journal of Medicine, 2021, 134, 235-242.e4.	0.6	10
31	Weight change after 20 years of age and the incidence of dyslipidemia: a cohort study of Japanese male workers. Journal of Public Health, 2016, 38, e77-e83.	1.0	9
32	Body flexibility and incident hypertension: The Niigata wellness study. Scandinavian Journal of Medicine and Science in Sports, 2021, 31, 702-709.	1.3	9
33	Greater Progression of Age-Related Aortic Stiffening in Adults with Poor Trunk Flexibility: A 5-Year Longitudinal Study. Frontiers in Physiology, 2017, 8, 454.	1.3	8
34	Visceral fat and cardiorespiratory fitness with prevalence of pre-diabetes/diabetes mellitus among middle-aged and elderly Japanese people: WASEDA'S Health Study. PLoS ONE, 2020, 15, e0241018.	1.1	8
35	Leisureâ€time physical activity and incidence of objectively assessed hearing loss: The Niigata Wellness Study. Scandinavian Journal of Medicine and Science in Sports, 2022, 32, 435-445.	1.3	8
36	Physical fitness for health. The Journal of Physical Fitness and Sports Medicine, 2014, 3, 377-384.	0.2	7

3

#	Article	IF	CITATIONS
37	Influence of Watching Professional Baseball on Japanese Elders' Affect and Subjective Happiness. Gerontology and Geriatric Medicine, 2017, 3, 233372141772140.	0.8	7
38	The Association of Fit-Fat Index with Incident Diabetes in Japanese Men: A Prospective Cohort Study. Scientific Reports, 2018, 8, 569.	1.6	7
39	Importance of Achieving a "Fit―Cardiorespiratory Fitness Level for Several Years on the Incidence of Type 2 Diabetes Mellitus: A Japanese Cohort Study. Journal of Epidemiology, 2018, 28, 230-236.	1.1	7
40	Frequency of achieving a  fit' cardiorespiratory fitness level and hypertension. Journal of Hypertension, 2019, 37, 820-826.	0.3	7
41	Is Less Sedentary Behavior, More Physical Activity, or Higher Fitness Associated with Sleep Quality? A Cross-Sectional Study in Singapore. International Journal of Environmental Research and Public Health, 2020, 17, 1337.	1.2	7
42	Dynapenic Obesity and Prevalence of Type 2 Diabetes in Middle-Aged Japanese Men. Journal of Epidemiology, 2015, 25, 656-662.	1.1	6
43	Tracking of Pedometer-Determined Physical Activity in Healthy Elderly Japanese People. Journal of Physical Activity and Health, 2015, 12, 1421-1429.	1.0	5
44	Combined aerobic and resistance training, and incidence of diabetes: A retrospective cohort study in Japanese older women. Journal of Diabetes Investigation, 2019, 10, 997-1003.	1.1	5
45	Determinants of Resting Oxidative Stress in Middle-Aged and Elderly Men and Women: WASEDA'S Health Study. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-11.	1.9	5
46	Susceptibility to Upper Respiratory Tract Infection and Touching of the Eyes or Nose: A Crossâ€sectional Study of Japanese Workers. Journal of Occupational Health, 2013, 55, 66-73.	1.0	4
47	Combined association of fitness and central adiposity with health-related quality of life in healthy Men: a cross-sectional study. Health and Quality of Life Outcomes, 2015, 13, 188.	1.0	4
48	Effect of watching professional baseball at a stadium on healthâ€related outcomes among Japanese older adults: A randomized controlled trial. Geriatrics and Gerontology International, 2019, 19, 717-722.	0.7	3
49	A Prospective Cohort Study of Muscular and Performance Fitness and Incident Glaucoma: The Niigata Wellness Study. Journal of Physical Activity and Health, 2020, 17, 1171-1178.	1.0	3
50	Effects of Combined Aerobic and Resistance Training. Medicine and Science in Sports and Exercise, 2017, 49, 34.	0.2	2
51	Objectively Measured Physical Activity and Low Back Pain in Japanese Men. Journal of Physical Activity and Health, 2018, 15, 417-422.	1.0	2
52	Simple-measured leg muscle strength and the prevalence of diabetes among Japanese males: a cross-sectional analysis of data from the Kameda health study. Journal of Physical Therapy Science, 2020, 32, 1-6.	0.2	2
53	Accuracy of Non-Exercise Estimated Cardiorespiratory Fitness in Japanese Adults. International Journal of Environmental Research and Public Health, 2021, 18, 12288.	1.2	2
54	Tracking of cardiorespiratory fitness in Japanese men. The Journal of Physical Fitness and Sports Medicine, 2018, 7, 25-33.	0.2	1

#	Article	IF	Citations
55	The association of fitness and fatness with intermediate hyperglycemia incidence in women: A cohort study. Preventive Medicine, 2021, 148, 106552.	1.6	1
56	The combination of cardiorespiratory fitness and muscular fitness, and prevalence of diabetes mellitus in middle-aged and older men: WASEDA'S Health Study. BMC Public Health, 2022, 22, 626.	1.2	1
57	Physical Activity And Life-style Related Diseases: Cross-sectional Study In Japanese Workers. Medicine and Science in Sports and Exercise, 2010, 42, 37.	0.2	0
58	Long-term Trends In Cardiorespiratory Fitness And The Incidence Of Hypertension. Medicine and Science in Sports and Exercise, 2011, 43, 785-786.	0.2	0
59	Age Group Difference In The Relationship Between Pedometer-determined Steps/day And Physical Fitness Among Japanese Elderly. Medicine and Science in Sports and Exercise, 2014, 46, 653.	0.2	0
60	Frequency of Combined Aerobic and Resistance Training and Incidence of Diabetes. Medicine and Science in Sports and Exercise, 2016, 48, 223.	0.2	0
61	Pedometer-determined Physical Activity And All-cause Mortality In Japanese Elderly Individuals. Medicine and Science in Sports and Exercise, 2016, 48, 555.	0.2	0
62	Change In Knee Extensor Strength And All-cause Mortality In Japanese Elderly Individuals. Medicine and Science in Sports and Exercise, 2017, 49, 787.	0.2	0
63	Predictive Indicators of Early Fitness Club Membership Termination in Japan. Medicine and Science in Sports and Exercise, 2017, 49, 221-222.	0.2	0
64	Fatness and Low Back Pain. Medicine and Science in Sports and Exercise, 2017, 49, 791-792.	0.2	0
65	Effect Of Cardiorespiratory Fitness On Blood Glucose Trajectory With Aging. Medicine and Science in Sports and Exercise, 2017, 49, 846.	0.2	0
66	Muscle Strength And Prevalence Of Diabetes, A Cross-sectional Study Among Japanese Men. Medicine and Science in Sports and Exercise, 2018, 50, 502-503.	0.2	0
67	Combined Association of Cardiorespiratory Fitness and Family History of Hypertension on the Incidence of Hypertension. Medicine and Science in Sports and Exercise, 2018, 50, 78-79.	0.2	0
68	Cardiorespiratory Fitness and Prevalence of Lifestyle-related Diseases In Japanese Men And Women: WASEDA'S Health Study. Medicine and Science in Sports and Exercise, 2019, 51, 218-219.	0.2	0
69	Muscular and Performance Fitness and Incidence of Type 2 Diabetes in Japanese Men. Medicine and Science in Sports and Exercise, 2004, 36, S85.	0.2	0
70	Cardiorespiratory Fitness And Incidence Of Hyperlipidemia. Medicine and Science in Sports and Exercise, 2005, 37, S383.	0.2	0
71	Associations between Cardiorespiratory Fitness Level and Health-Related Quality of Life: A Cross-Sectional Study of United States Navy Male Service Members Medicine and Science in Sports and Exercise, 2008, 40, S34-S35.	0.2	0
72	Muscular and Performance Fitness and All-Cause Mortality: Prospective Study of Japanese Men. Medicine and Science in Sports and Exercise, 2008, 40, S35.	0.2	0

#	Article	IF	CITATIONS
73	Influence of Cardiorespiratory Fitness and Drinking Habits on Total Cancer Mortality: A Cohort Study of Japanese Man. Japanese Journal of Physical Fitness and Sports Medicine, 2013, 62, 375-381.	0.0	O
74	Dynapenic Obesity and Prevalence of Type 2 Diabetes. Medicine and Science in Sports and Exercise, 2014, 46, 786.	0.2	0
75	Trunk Flexibility and the Incidence of Type 2 Diabetes In Japanese. Medicine and Science in Sports and Exercise, 2014, 46, 785.	0.2	O
76	Muscle Mass and Strength and Prevalence of Lower Back Pain. Medicine and Science in Sports and Exercise, 2014, 46, 786.	0.2	0
77	Sedentary Behavior, Physical Activity and Kidney Stones. Medicine and Science in Sports and Exercise, 2016, 48, 226.	0.2	0
78	Long-Term Impact of Cardiorespiratory Fitness on Type 2 Diabetes Incidence in Japanese Men. Medicine and Science in Sports and Exercise, 2016, 48, 224.	0.2	0
79	Higher Cardiorespiratory Fitness during a Given Period and Lower Incidence of Type 2 Diabetes. Medicine and Science in Sports and Exercise, 2016, 48, 223-224.	0.2	0
80	Cardiorespiratory Fitness and High Levels of non-HDL-cholesterol. Medicine and Science in Sports and Exercise, 2016, 48, 225.	0.2	0
81	Muscle Strength and Bone Strength Assessed with Osteo-sono Assessment Index Among Recreationally Athletic Japanese Women. Medicine and Science in Sports and Exercise, 2019, 51, 218-218.	0.2	0
82	A Prospective Cohort Study of Physical Fitness and Incident Glaucoma: The Niigata Wellness Study. Medicine and Science in Sports and Exercise, 2019, 51, 222-222.	0.2	0
83	Parasympathetic Nervous Regulation and Prevalence of Lifestyle-related Diseases In Japanese: Waseda's Health Study. Medicine and Science in Sports and Exercise, 2019, 51, 216-216.	0.2	0
84	The Independent And Joint Associations Of Fitness And Fatness With Incident Prediabetes In Women: A Cohort Study. Medicine and Science in Sports and Exercise, 2020, 52, 420-420.	0.2	0
85	Association Of Knee Extensor Strength With Prevalence Of Type 2 Diabetes Among Japanese: A Cross-sectional Study. Medicine and Science in Sports and Exercise, 2020, 52, 157-158.	0.2	0
86	Associations Of Physical Activity And Sedentary Behavior With The Onset Of Long-term Care Need In Community-dwelling Independent Japanese Older Adults: The Tsuru Study. Medicine and Science in Sports and Exercise, 2020, 52, 744-744.	0.2	0
87	A Prospective Cohort Study Of Physical Fitness And Incident Hearing Loss: The Niigata Wellness Study. Medicine and Science in Sports and Exercise, 2020, 52, 421-421.	0.2	0
88	Combined association of cardiorespiratory fitness and muscle mass with prevalence of diabetes mellitus: WASEDA'S Health Study. The Journal of Physical Fitness and Sports Medicine, 2022, 11, 189-195.	0.2	0