
Ching-Yao Chou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5875049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Tri-Mode Compressed Analytics Engine for Low-Power AF Detection With On-Demand EKG Reconstruction. IEEE Journal of Solid-State Circuits, 2021, 56, 1608-1617.	5.4	8
2	Low-Complexity On-Demand Reconstruction for Compressively Sensed Problematic Signals. IEEE Transactions on Signal Processing, 2020, 68, 4094-4107.	5.3	3
3	Compressed-Domain ECG-Based Biometric User Identification Using Compressive Analysis. Sensors, 2020, 20, 3279.	3.8	10
4	Low-Complexity Compressed Alignment-Aided Compressive Analysis for Real-Time Electrocardiography Telemonitoring. , 2020, , .		3
5	Accumulated Polar Feature-Based Deep Learning for Efficient and Lightweight Automatic Modulation Classification With Channel Compensation Mechanism. IEEE Transactions on Vehicular Technology, 2020, 69, 15472-15485.	6.3	26
6	Low-Complexity Compressive Analysis in Sub-Eigenspace for ECG Telemonitoring System. , 2019, , .		6
7	Co-Design of Sparse Coding and Dictionary Learning for Real-Time Physiological Signals Monitoring. , 2019, , .		1
8	Robust and Lightweight Ensemble Extreme Learning Machine Engine Based on Eigenspace Domain for Compressed Learning. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 4699-4712.	5.4	23
9	Low-Complexity Compressed Analysis in Eigenspace with Limited Labeled Data for Real-Time Electrocardiography Telemonitoring. , 2018, , .		3
10	Low-Complexity Privacy-Preserving Compressive Analysis Using Subspace-Based Dictionary for ECG Telemonitoring System. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 801-811.	4.0	37
11	Variation-Aware Reliable Many-Core System Design by Exploiting Inherent Core Redundancy. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25, 2803-2816.	3.1	6
12	Robust compressed analysis using subspace-based dictionary for ECG telemonitoring systems. , 2017, , .		5
13	Sniper-TEVR: Core-variation simulation platform with register-level fault injection for robust computing in CMP system. , 2016, , .		1
14	Variation-aware core-level redundancy scheme for reliable DSP computation in multi-core systems. , 2015, , .		2