List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5875039/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 2010, 23, 1696-1718.	3.2	5,467
2	Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 52-57.	7.1	1,077
3	Mediterranean water resources in a global change scenario. Earth-Science Reviews, 2011, 105, 121-139.	9.1	687
4	Performance of Drought Indices for Ecological, Agricultural, and Hydrological Applications. Earth Interactions, 2012, 16, 1-27.	1.5	635
5	A New Global 0.5° Gridded Dataset (1901–2006) of a Multiscalar Drought Index: Comparison with Current Drought Index Datasets Based on the Palmer Drought Severity Index. Journal of Hydrometeorology, 2010, 11, 1033-1043.	1.9	537
6	Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 2014, 9, 044001.	5.2	506
7	Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrology and Earth System Sciences, 2011, 15, 471-504.	4.9	476
8	The European mountain cryosphere: aÂreview of its current state, trends, and future challenges. Cryosphere, 2018, 12, 759-794.	3.9	382
9	Accurate Computation of a Streamflow Drought Index. Journal of Hydrologic Engineering - ASCE, 2012, 17, 318-332.	1.9	361
10	Hydrological response to different time scales of climatological drought: an evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin. Hydrology and Earth System Sciences, 2005, 9, 523-533.	4.9	259
11	Contribution of precipitation and reference evapotranspiration to drought indices under different climates. Journal of Hydrology, 2015, 526, 42-54.	5.4	245
12	The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). Journal of Hydrology, 2010, 386, 13-26.	5.4	227
13	Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Global and Planetary Change, 2011, 77, 62-76.	3.5	223
14	Assessing the Effect of Climate Oscillations and Land-use Changes on Streamflow in the Central Spanish Pyrenees. Ambio, 2003, 32, 283-286.	5.5	192
15	Impact of climate evolution and land use changes on water yield in the ebro basin. Hydrology and Earth System Sciences, 2011, 15, 311-322.	4.9	172
16	Recent trends in Iberian streamflows (1945–2005). Journal of Hydrology, 2012, 414-415, 463-475.	5.4	158
17	Environmental change and water management in the Pyrenees: Facts and future perspectives for Mediterranean mountains. Global and Planetary Change, 2008, 61, 300-312.	3.5	149
18	Positive and Negative Phases of the Wintertime North Atlantic Oscillation and Drought Occurrence over Europe: A Multitemporal-Scale Approach. Journal of Climate, 2008, 21, 1220-1243.	3.2	140

#	Article	IF	CITATIONS
19	Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Advances in Water Resources, 2013, 55, 40-52.	3.8	136
20	Impact of climate and land use change on water availability and reservoir management: Scenarios in the Upper AragÃ ³ n River, Spanish Pyrenees. Science of the Total Environment, 2014, 493, 1222-1231.	8.0	134
21	Homogenization and Assessment of Observed Near-Surface Wind Speed Trends over Spain and Portugal, 1961–2011*. Journal of Climate, 2014, 27, 3692-3712.	3.2	132
22	Hydrological response to climate variability at different time scales: A study in the Ebro basin. Journal of Hydrology, 2013, 477, 175-188.	5.4	131
23	Climate Change in Mediterranean Mountains during the 21st Century. Ambio, 2008, 37, 280-285.	5.5	129
24	Assessing trends in extreme precipitation events intensity and magnitude using nonâ€stationary peaksâ€overâ€threshold analysis: a case study in northeast Spain from 1930 to 2006. International Journal of Climatology, 2011, 31, 2102-2114.	3.5	128
25	Impact of climate change on snowpack in the Pyrenees: Horizontal spatial variability and vertical gradients. Journal of Hydrology, 2009, 374, 384-396.	5.4	127
26	Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems. Applied Geography, 2012, 34, 471-486.	3.7	127
27	Dam effects on droughts magnitude and duration in a transboundary basin: The Lower River Tagus, Spain and Portugal. Water Resources Research, 2009, 45, .	4.2	125
28	Recent Variations of Snowpack Depth in the Central Spanish Pyrenees. Arctic, Antarctic, and Alpine Research, 2005, 37, 253-260.	1.1	124
29	Trends in daily precipitation on the northeastern Iberian Peninsula, 1955–2006. International Journal of Climatology, 2010, 30, 1026-1041.	3.5	121
30	Hydrological drought response to meteorological drought in the Iberian Peninsula. Climate Research, 2013, 58, 117-131.	1.1	121
31	A multiscalar global evaluation of the impact of ENSO on droughts. Journal of Geophysical Research, 2011, 116, .	3.3	120
32	A complete daily precipitation database for northeast Spain: reconstruction, quality control, and homogeneity. International Journal of Climatology, 2010, 30, 1146-1163.	3.5	119
33	The Little Ice Age in Iberian mountains. Earth-Science Reviews, 2018, 177, 175-208.	9.1	119
34	Comment on "Characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during 1900–2008―by Aiguo Dai. Journal of Geophysical Research, 2011, 116, .	3.3	116
35	The influence of atmospheric circulation at different spatial scales on winter drought variability through a semi-arid climatic gradient in Northeast Spain. International Journal of Climatology, 2006, 26, 1427-1453.	3.5	115
36	Where Does the Iberian Peninsula Moisture Come From? An Answer Based on a Lagrangian Approach. Journal of Hydrometeorology, 2010, 11, 421-436.	1.9	111

#	Article	IF	CITATIONS
37	Reference evapotranspiration variability and trends in Spain, 1961–2011. Global and Planetary Change, 2014, 121, 26-40.	3.5	106
38	Influence of snow accumulation and snowmelt on streamflow in the central Spanish Pyrenees / Influence de l'accumulation et de la fonte de la neige sur les écoulements dans les Pyrénées centrales espagnoles. Hydrological Sciences Journal, 2004, 49, .	2.6	101
39	Nonstationary influence of the North Atlantic Oscillation on European precipitation. Journal of Geophysical Research, 2008, 113, .	3.3	101
40	Extreme winter precipitation in the Iberian Peninsula in 2010: anomalies, driving mechanisms and future projections. Climate Research, 2011, 46, 51-65.	1.1	100
41	Trends in high flows in the central Spanish Pyrenees: response to climatic factors or to land-use change?. Hydrological Sciences Journal, 2006, 51, 1039-1050.	2.6	97
42	Sensitivity of reference evapotranspiration to changes in meteorological parameters in <scp>S</scp> pain (1961–2011). Water Resources Research, 2014, 50, 8458-8480.	4.2	94
43	Snow hydrology in Mediterranean mountain regions: A review. Journal of Hydrology, 2017, 551, 374-396.	5.4	94
44	Climate change prediction over complex areas: spatial variability of uncertainties and predictions over the Pyrenees from a set of regional climate models. International Journal of Climatology, 2008, 28, 1535-1550.	3.5	93
45	The changing roles of temperature and precipitation on snowpack variability in Switzerland as a function of altitude. Geophysical Research Letters, 2013, 40, 2131-2136.	4.0	91
46	Response of snow processes to climate change: spatial variability in a small basin in the Spanish Pyrenees. Hydrological Processes, 2013, 27, 2637-2650.	2.6	87
47	Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmospheric Research, 2018, 208, 4-44.	4.1	85
48	Trend and variability of surface air temperature in northeastern Spain (1920–2006): Linkage to atmospheric circulation. Atmospheric Research, 2012, 106, 159-180.	4.1	83
49	Recent trends in daily temperature extremes over northeastern Spain (1960–2006). Natural Hazards and Earth System Sciences, 2011, 11, 2583-2603.	3.6	79
50	The complex influence of ENSO on droughts in Ecuador. Climate Dynamics, 2017, 48, 405-427.	3.8	78
51	Streamflow droughts in the Iberian Peninsula between 1945 and 2005: spatial and temporal patterns. Hydrology and Earth System Sciences, 2013, 17, 119-134.	4.9	77
52	Recent glacier retreat and climate trends in Cordillera Huaytapallana, Peru. Global and Planetary Change, 2014, 112, 1-11.	3.5	74
53	Interpolating local snow depth data: an evaluation of methods. Hydrological Processes, 2006, 20, 2217-2232.	2.6	73
54	Annual and seasonal mapping of peak intensity, magnitude and duration of extreme precipitation events across a climatic gradient, northeast Spain. International Journal of Climatology, 2009, 29, 1759-1779.	3.5	73

#	Article	IF	CITATIONS
55	Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas. Environmental Research Letters, 2017, 12, 074006.	5.2	73
56	Effects of warming processes on droughts and water resources in the NW Iberian ÂPeninsula (1930â^2006). Climate Research, 2011, 48, 203-212.	1.1	72
57	From plot to regional scales: Interactions of slope and catchment hydrological and geomorphic processes in the Spanish Pyrenees. Geomorphology, 2010, 120, 248-257.	2.6	71
58	Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence. Cryosphere, 2014, 8, 1989-2006.	3.9	71
59	Temporal evolution of surface humidity in Spain: recent trends and possible physical mechanisms. Climate Dynamics, 2014, 42, 2655-2674.	3.8	71
60	Fluvial adjustments to soil erosion and plant cover changes in the central spanish pyrenees. Geografiska Annaler, Series A: Physical Geography, 2006, 88, 177-186.	1.5	70
61	Hydrological impacts of climate and landâ€use changes in a mountain watershed: uncertainty estimation based on model comparison. Ecohydrology, 2015, 8, 1396-1416.	2.4	70
62	Evapotranspiration deficit controls net primary production and growth of silver fir: Implications for Circum-Mediterranean forests under forecasted warmer and drier conditions. Agricultural and Forest Meteorology, 2015, 206, 45-54.	4.8	68
63	Climate trends and variability in Ecuador (1966-2011). International Journal of Climatology, 2016, 36, 3839-3855.	3.5	68
64	Holocene and †̃Little Ice Age' glacial activity in the Marboré Cirque, Monte Perdido Massif, Central Spanish Pyrenees. Holocene, 2014, 24, 1439-1452.	1.7	67
65	Daily atmospheric circulation events and extreme precipitation risk in northeast Spain: Role of the North Atlantic Oscillation, the Western Mediterranean Oscillation, and the Mediterranean Oscillation. Journal of Geophysical Research, 2009, 114, .	3.3	66
66	Impacts of climate change on ski industry. Environmental Science and Policy, 2014, 44, 51-61.	4.9	66
67	Statistical analysis of the snow cover variability in a subalpine watershed: Assessing the role of topography and forest interactions. Journal of Hydrology, 2008, 348, 379-394.	5.4	65
68	Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies. Cryosphere, 2011, 5, 617-629.	3.9	63
69	River regimes and recent hydrological changes in the Duero basin (Spain). Journal of Hydrology, 2011, 404, 241-258.	5.4	61
70	Influence of the North Atlantic Oscillation on water resources in central Iberia: Precipitation, streamflow anomalies, and reservoir management strategies. Water Resources Research, 2007, 43, .	4.2	59
71	The response of Iberian rivers to the North Atlantic Oscillation. Hydrology and Earth System Sciences, 2011, 15, 2581-2597.	4.9	58
72	Influence of canopy density on snow distribution in a temperate mountain range. Hydrological Processes, 2008, 22, 117-126.	2.6	57

5

#	Article	IF	CITATIONS
73	Streamflow timing of mountain rivers in Spain: Recent changes and future projections. Journal of Hydrology, 2014, 517, 1114-1127.	5.4	57
74	Late Pleistocene deglaciation in the upper GÃ _i llego Valley, central Pyrenees. Quaternary Research, 2015, 83, 397-414.	1.7	56
75	Atmospheric circulation influence on the interannual variability of snow pack in the Spanish Pyrenees during the second half of the 20th century. Hydrology Research, 2007, 38, 33-44.	2.7	55
76	Climate, Irrigation, and Land Cover Change Explain Streamflow Trends in Countries Bordering the Northeast Atlantic. Geophysical Research Letters, 2019, 46, 10821-10833.	4.0	55
77	A generalized additive model for the spatial distribution of snowpack in the Spanish Pyrenees. Hydrological Processes, 2005, 19, 3167-3176.	2.6	54
78	Evaluation of the TMPA-3B42 precipitation product using a high-density rain gauge network over complex terrain in northeastern Iberia. Global and Planetary Change, 2015, 133, 188-200.	3.5	54
79	An Exceptional Rainfall Event in the Central Western Pyrenees: Spatial Patterns in Discharge and Impact. Land Degradation and Development, 2015, 26, 249-262.	3.9	54
80	The effect of slope aspect on the response of snowpack to climate warming in the Pyrenees. Theoretical and Applied Climatology, 2014, 117, 207-219.	2.8	53
81	Influence of the Yesa reservoir on floods of the Aragón River, central Spanish Pyrenees. Hydrology and Earth System Sciences, 2002, 6, 753-762.	4.9	52
82	The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees). Soil, 2015, 1, 561-573.	4.9	52
83	Responses to climatic changes since the Little Ice Age on Maladeta Glacier (Central Pyrenees). Geomorphology, 2005, 68, 167-182.	2.6	51
84	Comparison of different procedures to map reference evapotranspiration using geographical information systems and regression-based techniques. International Journal of Climatology, 2007, 27, 1103-1118.	3.5	51
85	Spatioâ€ŧemporal variability of droughts in Bolivia: 1955–2012. International Journal of Climatology, 2015, 35, 3024-3040.	3.5	50
86	European In-Situ Snow Measurements: Practices and Purposes. Sensors, 2018, 18, 2016.	3.8	50
87	The impact of COVID-19 lockdowns on surface urban heat island changes and air-quality improvements across 21 major cities in the Middle East. Environmental Pollution, 2021, 288, 117802.	7.5	50
88	Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981. Cryosphere, 2016, 10, 681-694.	3.9	49
89	Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement. Atmospheric Research, 2018, 203, 175-188.	4.1	49
90	The Management of a Large Mediterranean Reservoir: Storage Regimens of the Yesa Reservoir, Upper Aragon River Basin, Central Spanish Pyrenees. Environmental Management, 2004, 34, 508-515.	2.7	46

#	Article	IF	CITATIONS
91	Stability of the seasonal distribution of precipitation in the Mediterranean region: Observations since 1950 and projections for the 21st century. Geophysical Research Letters, 2009, 36, .	4.0	46
92	Effects of climate change on the intensity and frequency of heavy snowfall events in the Pyrenees. Climatic Change, 2011, 105, 489-508.	3.6	44
93	Climate controls on rainfall isotopes and their effects on cave drip water and speleothem growth: the case of Molinos cave (Teruel, NE Spain). Climate Dynamics, 2014, 43, 221-241.	3.8	44
94	Global characterization of hydrological and meteorological droughts under future climate change: The importance of timescales, vegetation O ₂ feedbacks and changes to distribution functions. International Journal of Climatology, 2020, 40, 2557-2567.	3.5	44
95	Extreme hydrological events and the influence of reservoirs in a highly regulated river basin of northeastern Spain. Journal of Hydrology: Regional Studies, 2017, 12, 13-32.	2.4	43
96	Transhumance and long-term deforestation in the subalpine belt of the central Spanish Pyrenees: An interdisciplinary approach. Catena, 2020, 195, 104744.	5.0	43
97	Los efectos geoecológicos del cambio global en el Pirineo Central español: una revisión a distintas escalas espaciales y temporales. Pirineos, 2015, 170, e012.	0.6	43
98	Different patterns of climate change scenarios for short-term and multi-day precipitation extremes in the Mediterranean. Global and Planetary Change, 2012, 98-99, 63-72.	3.5	42
99	Investigation of scaling properties in monthly streamflow and Standardized Streamflow Index (SSI) time series in the Ebro basin (Spain). Physica A: Statistical Mechanics and Its Applications, 2012, 391, 1662-1678.	2.6	41
100	Performance Assessment of Optical Satellite-Based Operational Snow Cover Monitoring Algorithms in Forested Landscapes. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7159-7178.	4.9	41
101	Will snowâ€ e bundant winters still exist in the Swiss Alps in an enhanced greenhouse climate?. International Journal of Climatology, 2011, 31, 1257-1263.	3.5	40
102	Impact of climate warming on snow processes in Ny-Ã…lesund, a polar maritime site at Svalbard. Global and Planetary Change, 2016, 146, 10-21.	3.5	40
103	Longâ€ŧerm trends (1958–2017) in snow cover duration and depth in the Pyrenees. International Journal of Climatology, 2020, 40, 6122-6136.	3.5	40
104	Snow cover response to climate change in a high alpine and half-glacierized basin in Switzerland. Hydrology Research, 2010, 41, 230-240.	2.7	39
105	Spatial and temporal variability of winter snow and precipitation days in the western and central Spanish Pyrenees. International Journal of Climatology, 2015, 35, 259-274.	3.5	39
106	Daily temperature extremes over Egypt: Spatial patterns, temporal trends, and driving forces. Atmospheric Research, 2019, 226, 219-239.	4.1	39
107	The NAO Impact on Droughts in the Mediterranean Region. Advances in Global Change Research, 2011, , 23-40.	1.6	38
108	Canopy influence on snow depth distribution in a pine stand determined from terrestrial laser data. Water Resources Research, 2015, 51, 3476-3489.	4.2	38

#	Article	IF	CITATIONS
109	Recent evolution (1981–2005) of the Maladeta glaciers, Pyrenees, Spain: extent and volume losses and their relation with climatic and topographic factors. Journal of Glaciology, 2007, 53, 547-557.	2.2	37
110	Snowpack variability across various spatioâ€ŧemporal resolutions. Hydrological Processes, 2015, 29, 1213-1224.	2.6	37
111	Effect of reservoirs on streamflow and river regimes in a heavily regulated river basin of Northeast Spain. Catena, 2017, 149, 727-741.	5.0	37
112	Temperature trends in Libya over the second half of the 20th century. Theoretical and Applied Climatology, 2009, 98, 1-8.	2.8	36
113	An assessment of the role of homogenization protocol in the performance of daily temperature series and trends: application to northeastern Spain. International Journal of Climatology, 2013, 33, 87-108.	3.5	36
114	The vulnerability of Pyrenean ski resorts to climate-induced changes in the snowpack. Climatic Change, 2015, 131, 591-605.	3.6	36
115	The Westerly Index as complementary indicator of the North Atlantic oscillation in explaining drought variability across Europe. Climate Dynamics, 2016, 47, 845-863.	3.8	36
116	Sensitivity of the snow energy balance to climatic changes: prediction of snowpack in the Pyrenees in the 21st century. Climate Research, 2008, 36, 203-217.	1.1	36
117	Assessment of snowfall accumulation underestimation by tipping bucket gauges in the Spanish operational network. Atmospheric Measurement Techniques, 2017, 10, 1079-1091.	3.1	36
118	Mapping the annual evolution of snow depth in a small catchment in the Pyrenees using the long-range terrestrial laser scanning. Journal of Maps, 2014, 10, 379-393.	2.0	34
119	Daily gridded datasets of snow depth and snow water equivalent for the Iberian Peninsula from 1980 to 2014. Earth System Science Data, 2018, 10, 303-315.	9.9	34
120	Impacts of future land cover and climate change on the water balance in northern Iran. Hydrological Sciences Journal, 2017, 62, 2655-2673.	2.6	33
121	Daily precipitation intensity projected for the 21st century: seasonal changes over the Pyrenees. Theoretical and Applied Climatology, 2009, 95, 375-384.	2.8	32
122	Combining snowpack modeling and terrestrial laser scanner observations improves the simulation of small scale snow dynamics. Journal of Hydrology, 2016, 533, 291-307.	5.4	32
123	Assessing the impact of measurement time interval when calculating wind speed means and trends under the stilling phenomenon. International Journal of Climatology, 2017, 37, 480-492.	3.5	32
124	Recent changes in monthly surface air temperature over Peru, 1964–2014. International Journal of Climatology, 2018, 38, 283-306.	3.5	32
125	Postâ€little ice age paraglacial processes and landforms in the high Iberian mountains: A review. Land Degradation and Development, 2018, 29, 4186-4208.	3.9	32
126	Ground-based remote-sensing techniques for diagnosis of the current state and recent evolution of the Monte Perdido Glacier, Spanish Pyrenees. Journal of Glaciology, 2019, 65, 85-100.	2.2	32

#	Article	IF	CITATIONS
127	Decoupling of warming mountain snowpacks from hydrological regimes. Environmental Research Letters, 2020, 15, 114006.	5.2	31
128	Changes in the frequency and severity of hydrological droughts over Ethiopia from 1960 to 2013. Cuadernos De Investigacion Geografica, 2016, 42, 145-166.	1.1	31
129	Rain-on-snow events in Switzerland: recent observations and projections for the 21st century. Climate Research, 2016, 71, 111-125.	1.1	31
130	Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index. Remote Sensing, 2020, 12, 2904.	4.0	30
131	Spatial Predictions of Extreme Wind Speeds over Switzerland Using Generalized Additive Models. Journal of Applied Meteorology and Climatology, 2010, 49, 1956-1970.	1.5	29
132	Glacier development and topographic context. Earth Surface Processes and Landforms, 2006, 31, 1585-1594.	2.5	28
133	Recent changes in continentality and aridity conditions over the Middle East and North Africa region, and their association with circulation patterns. Climate Research, 2016, 69, 25-43.	1.1	28
134	Using very long-range terrestrial laser scanner to analyze the temporal consistency of the snowpack distribution in a high mountain environment. Journal of Mountain Science, 2017, 14, 823-842.	2.0	28
135	Land-cover changes and recent hydrological evolution in the Duero Basin (Spain). Regional Environmental Change, 2012, 12, 17-33.	2.9	27
136	Estimation of nearâ€surface air temperature lapse rates over continental Spain and its mountain areas. International Journal of Climatology, 2018, 38, 3233-3249.	3.5	27
137	Intercomparison of measurements of bulk snow density and water equivalent of snow cover with snow core samplers: Instrumental bias and variability induced by observers. Hydrological Processes, 2020, 34, 3120-3133.	2.6	27
138	Change of topographic control on the extent of cirque glaciers since the Little Ice Age. Geophysical Research Letters, 2006, 33, .	4.0	26
139	Summer temperature extremes in northeastern Spain: spatial regionalization and links to atmospheric circulation (1960–2006). Theoretical and Applied Climatology, 2013, 113, 387-405.	2.8	26
140	Evolution and frequency (1970–2007) of combined temperature–precipitation modes in the Spanish mountains and sensitivity of snow cover. Regional Environmental Change, 2013, 13, 873-885.	2.9	26
141	Effects of sample and grid size on the accuracy and stability of regressionâ€based snow interpolation methods. Hydrological Processes, 2010, 24, 1914-1928.	2.6	25
142	Recent temperature variability and change in the Altiplano of Bolivia and Peru. International Journal of Climatology, 2016, 36, 1773-1796.	3.5	25
143	Assessment of ski condition reliability in the Spanish and Andorran Pyrenees for the second half of the 20th century. Applied Geography, 2017, 79, 127-142.	3.7	25
144	Power spectral characteristics of drought indices in the Ebro river basin at different temporal scales. Stochastic Environmental Research and Risk Assessment, 2013, 27, 1155-1170.	4.0	24

#	Article	IF	CITATIONS
145	Evidence for intensification of meteorological droughts in Oman over the past four decades. Atmospheric Research, 2020, 246, 105126.	4.1	24
146	Spatio-temporal snowmelt variability across the headwaters of the Southern Rocky Mountains. Frontiers of Earth Science, 2017, 11, 505-514.	2.1	22
147	A comparison of temporal variability of observed and modelâ€based pan evaporation over Uruguay (1973–2014). International Journal of Climatology, 2018, 38, 337-350.	3.5	22
148	Snow dynamics influence tree growth by controlling soil temperature in mountain pine forests. Agricultural and Forest Meteorology, 2021, 296, 108205.	4.8	22
149	Impact of weather type variability on winter precipitation, temperature and annual snowpack in the Spanish Pyrenees. Climate Research, 2016, 69, 79-92.	1.1	21
150	Analysis and Predictability of the Hydrological Response of Mountain Catchments to Heavy Rain on Snow Events: A Case Study in the Spanish Pyrenees. Hydrology, 2017, 4, 20.	3.0	21
151	Increased Vegetation in Mountainous Headwaters Amplifies Water Stress During Dry Periods. Geophysical Research Letters, 2021, 48, e2021GL094672.	4.0	21
152	Intercomparison of UAV platforms for mapping snow depth distribution in complex alpine terrain. Cold Regions Science and Technology, 2021, 190, 103344.	3.5	21
153	Análisis espacio-temporal de los eventos de nevadas en el Pirineo español y su relación con la circulación atmosférica. Cuadernos De Investigacion Geografica, 2017, 43, 233-254.	1.1	21
154	Meteorological and snow distribution data in the Izas Experimental Catchment (Spanish Pyrenees) fromÂ2011ÂtoÂ2017. Earth System Science Data, 2017, 9, 993-1005.	9.9	21
155	Differences in the nonâ€stationary influence of the North Atlantic Oscillation on European precipitation under different scenarios of greenhouse gas concentrations. Geophysical Research Letters, 2008, 35, .	4.0	20
156	Effect of snow on mountain river regimes: an example from the Pyrenees. Frontiers of Earth Science, 2017, 11, 515-530.	2.1	20
157	Toward an Iceâ€Free Mountain Range: Demise of Pyrenean Glaciers During 2011–2020. Geophysical Research Letters, 2021, 48, e2021GL094339.	4.0	20
158	Deriving snow-cover depletion curves for different spatial scales from remote sensing and snow telemetry data. Hydrological Processes, 2016, 30, 1708-1717.	2.6	19
159	SnowCloudHydro—A New Framework for Forecasting Streamflow in Snowy, Data-Scarce Regions. Remote Sensing, 2018, 10, 1276.	4.0	19
160	Snow climatology for the mountains in the Iberian Peninsula using satellite imagery and simulations with dynamically downscaled reanalysis data. International Journal of Climatology, 2020, 40, 477-491.	3.5	19
161	Changes in the frequency of global high mountain rain-on-snow events due to climate warming. Environmental Research Letters, 2021, 16, 094021.	5.2	19
162	Hydrological and depositional processes associated with recent glacier recession in Yanamarey catchment, Cordillera Blanca (Peru). Science of the Total Environment, 2017, 579, 272-282.	8.0	18

#	Article	IF	CITATIONS
163	Hydro-Meteorological Characterization of Major Floods in Spanish Mountain Rivers. Water (Switzerland), 2019, 11, 2641.	2.7	18
164	Nocturnal Surface Urban Heat Island over Greater Cairo: Spatial Morphology, Temporal Trends and Links to Land-Atmosphere Influences. Remote Sensing, 2020, 12, 3889.	4.0	18
165	Reservoir Management in the Duero Basin (Spain): Impact on River Regimes and the Response to Environmental Change. Water Resources Management, 2012, 26, 2125-2146.	3.9	17
166	Mapping snow cover and snow depth across the Lake Limnopolar watershed on Byers Peninsula, Livingston Island, Maritime Antarctica. Antarctic Science, 2013, 25, 157-166.	0.9	17
167	Backward snow depth reconstruction at high spatial resolution based on timeâ€lapse photography. Hydrological Processes, 2016, 30, 2976-2990.	2.6	17
168	Detecting snow-related signals in radial growth of Pinus uncinata mountain forests. Dendrochronologia, 2019, 57, 125622.	2.2	17
169	Superficie glaciar actual en los Pirineos: Una actualización para 2016. Pirineos, 0, 172, 029.	0.6	17
170	The influence of diurnal snowmelt and transpiration on hillslope throughflow and stream response. Hydrology and Earth System Sciences, 2018, 22, 4295-4310.	4.9	16
171	Periglacial environments and frozen ground in the central Pyrenean high mountain area: Ground thermal regime and distribution of landforms and processes. Permafrost and Periglacial Processes, 2019, 30, 292-309.	3.4	16
172	Interannual and Seasonal Variability of Snow Depth Scaling Behavior in a Subalpine Catchment. Water Resources Research, 2020, 56, e2020WR027343.	4.2	15
173	The complex multi-sectoral impacts of drought: Evidence from a mountainous basin in the Central Spanish Pyrenees. Science of the Total Environment, 2021, 769, 144702.	8.0	15
174	Light and Shadow in Mapping Alpine Snowpack With Unmanned Aerial Vehicles in the Absence of Ground Control Points. Water Resources Research, 2021, 57, e2020WR028980.	4.2	15
175	Impact of North Atlantic Oscillation on the Snowpack in Iberian Peninsula Mountains. Water (Switzerland), 2020, 12, 105.	2.7	15
176	A Lagrangian analysis of the present-day sources of moisture for major ice-core sites. Earth System Dynamics, 2016, 7, 549-558.	7.1	14
177	Average monthly and annual climate maps for Bolivia. Journal of Maps, 2016, 12, 295-310.	2.0	13
178	The Influence of Climate and Land-Cover Scenarios on Dam Management Strategies in a High Water Pressure Catchment in Northeast Spain. Water (Switzerland), 2018, 10, 1668.	2.7	13
179	Recent evolution and associated hydrological dynamics of a vanishing tropical Andean glacier: Glaciar de Conejeras, Colombia. Hydrology and Earth System Sciences, 2018, 22, 5445-5461.	4.9	13
180	Distribution of snow depth variability. Frontiers of Earth Science, 2018, 12, 683-692.	2.1	13

11

#	Article	IF	CITATIONS
181	Maximum and minimum air temperature lapse rates in the Andean region of Ecuador and Peru. International Journal of Climatology, 2020, 40, 6150-6168.	3.5	13
182	Observed trends and future projections for winter warm events in the Ebro basin, northeast Iberian Peninsula. International Journal of Climatology, 2014, 34, 49-60.	3.5	12
183	Spatial assessment of the performance of multiple highâ€resolution satelliteâ€based precipitation data sets over the Middle East. International Journal of Climatology, 2019, 39, 2522-2543.	3.5	12
184	Elevation Effects on Air Temperature in a Topographically Complex Mountain Valley in the Spanish Pyrenees. Atmosphere, 2020, 11, 656.	2.3	12
185	Variable effects of forest canopies on snow processes in a valley of the central Spanish Pyrenees. Hydrological Processes, 2020, 34, 2247-2262.	2.6	12
186	Changes in Climate, Snow and Water Resources in the Spanish Pyrenees: Observations and Projections in a Warming Climate. Advances in Global Change Research, 2017, , 305-323.	1.6	12
187	Spatial Downscaling of MODIS Snow Cover Observations Using Sentinel-2 Snow Products. Remote Sensing, 2021, 13, 4513.	4.0	12
188	Spatial heterogeneity in snow water equivalent induced by forest canopy in a mixed beech–fir stand in the Pyrenees. Annals of Glaciology, 2008, 49, 83-90.	1.4	11
189	Influence of Winter North Atlantic Oscillation Index (NAO) on Climate and Snow Accumulation in the Mediterranean Mountains. Advances in Global Change Research, 2011, , 73-89.	1.6	11
190	The contrasted evolution of high and low flows and precipitation indices in the Duero basin (Spain). Hydrological Sciences Journal, 2012, 57, 591-611.	2.6	11
191	Assessing the capability of multiâ€scale drought datasets to quantify drought severity and to identify drought impacts: an example in the Ebro Basin. International Journal of Climatology, 2013, 33, 1884-1897.	3.5	11
192	Anomalously severe cold nights and warm days in northeastern Spain: their spatial variability, driving forces and future projections. Global and Planetary Change, 2013, 101, 12-32.	3.5	11
193	Neoglaciation in the Spanish Pyrenees: a multiproxy challenge. Mediterranean Geoscience Reviews, 2020, 2, 21-36.	1.2	11
194	The case of a southern European glacier which survived Roman and medieval warm periods but is disappearing under recent warming. Cryosphere, 2021, 15, 1157-1172.	3.9	11
195	Snow Impurities in the Central Pyrenees: From Their Geochemical and Mineralogical Composition towards Their Impacts on Snow Albedo. Atmosphere, 2020, 11, 937.	2.3	10
196	Spatioâ€ŧemporal patterns of snow in the Catalan Pyrenees (<scp>NE</scp> Iberia). International Journal of Climatology, 2021, 41, 5676-5697.	3.5	10
197	Frozen ground and periglacial processes relationship in temperate high mountains: a case study at Monte Perdido-Tucarroya area (The Pyrenees, Spain). Journal of Mountain Science, 2020, 17, 1013-1031.	2.0	9
198	Respuesta hidrológica del Pirineo central al cambio ambiental proyectado para el siglo XXI. Pirineos, 2014, 169, e004.	0.6	9

#	Article	IF	CITATIONS
199	A daytime over land algorithm for computing AVHRR convective cloud climatologies for the Iberian Peninsula and the Balearic Islands. International Journal of Climatology, 2013, 33, 2113-2128.	3.5	8
200	Daily temperature changes and variability in ENSEMBLES regional models predictions: Evaluation and intercomparison for the Ebro Valley (NE Iberia). Atmospheric Research, 2015, 155, 141-157.	4.1	8
201	Mapping seasonal and annual extreme precipitation over the Peruvian Andes. International Journal of Climatology, 2018, 38, 5459-5475.	3.5	8
202	Land cover change modelling in Hyrcanian forests, Northern Iran: a landscape pattern and transformation analysis perspective. Cuadernos De Investigacion Geografica, 2018, 44, 743-761.	1.1	8
203	Comparison of regression techniques for mapping fog frequency: application to the Aragón region (northeast Spain). International Journal of Climatology, 2010, 30, 935-945.	3.5	7
204	Topographic control of glacier changes since the end of the Little Ice Age in the Sierra Nevada de Santa Marta mountains, Colombia. Journal of South American Earth Sciences, 2020, 104, 102803.	1.4	7
205	Landscape changes and land degradation in the subalpine belt of the Central Spanish Pyrenees. Journal of Arid Environments, 2021, 186, 104396.	2.4	7
206	Sensitivity of forest–snow interactions to climate forcing: Local variability in a Pyrenean valley. Journal of Hydrology, 2022, 605, 127311.	5.4	7
207	Increase of the energy available for snow ablation in the Pyrenees (1959–2020) and its relation to atmospheric circulation. Atmospheric Research, 2022, 275, 106228.	4.1	7
208	Small-Scale Effect of Pine Stand Pruning on Snowpack Distribution in the Pyrenees Observed with a Terrestrial Laser Scanner. Forests, 2016, 7, 166.	2.1	6
209	Impacts of land abandonment and climate variability on runoff generation and sediment transport in the Pisuerga headwaters (Cantabrian Mountains, Spain). Geografiska Annaler, Series A: Physical Geography, 2019, 101, 211-224.	1.5	6
210	Critical discussion of: "A farewell to glaciers: Ecosystem services loss in the Spanish Pyrenees― Journal of Environmental Management, 2020, 275, 111247.	7.8	6
211	Patterns of trends in niveograph characteristics across the western United States from snow telemetry data. Frontiers of Earth Science, 2020, 14, 315-325.	2.1	6
212	The significance of monitoring high mountain environments to detect heavy precipitation hotspots: a case study in Gredos, Central Spain. Theoretical and Applied Climatology, 2021, 146, 1175-1188.	2.8	6
213	AVHRR warmâ€season cloud climatologies under various synoptic regimes across the Iberian Peninsula and the Balearic Islands. International Journal of Climatology, 2015, 35, 1984-2002.	3.5	4
214	First evidence of rock wall permafrost in the Pyrenees (Vignemale peak, 3,298 m a.s.l.,) Tj ETQq0 0 0 rg	BT /Overlo	ock_10 Tf 50 1
215	Glacier and climate evolution in the Pariacacá Mountains, Peru. Cuadernos De Investigacion Geografica, 2020, 46, 127-139.	1.1	4
216	Utilización de técnicas de láser escáner terrestre en la monitorización de procesos geomorfológicos dinámicos: el manto de nieve y heleros en áreas de montaña. Cuadernos De Investigacion Geografica,	1.1	3

dinámicos: el manto de nieve y heleros en áreas de montaña. Cuadernos De Investigación Geografica, 2013, 39, 335. 216 1.1

#	Article	IF	CITATIONS
217	Characterization of the atmospheric component of the winter hydrological cycle in the Galicia/North Portugal Euro-region: a Lagrangian approach. Climate Research, 2011, 48, 193-201.	1.1	3
218	Combined influence of maximum accumulation and melt rates on the duration of the seasonal snowpack over temperate mountains. Journal of Hydrology, 2022, 608, 127574.	5.4	3
219	Recent Evolution of Glaciers in the <scp>Cocuyâ€Güican</scp> Mountains (Colombian Andes) and Its Hydrological Implications. Land Degradation and Development, 0, , .	3.9	3
220	Feasibility of sunshine duration records to detect changes in atmospheric turbidity: A case study in Valencia (Spain). AIP Conference Proceedings, 2013, , .	0.4	2
221	Análisis de la variabilidad espacio-temporal de las precipitaciones en el sector español de la cuenca del Duero (1961-2005). Boletin De La Asociacion De Geografos Espanoles, 2013, , .	0.3	2
222	Spatio-temporal variability of snowpack properties: Comparing operational, field, and ICESat remote sensing data over Northern Colorado, United States. , 2012, , .		1
223	DinÃ;mica del manto de nieve en una pequeña cuenca de montaña mediterrÃ;nea: el caso del rÃo Tormes (Cuenca del Duero, España). Revista De Geografia Norte Grande, 2018, , 9-34.	0.2	1
224	Terrestrial Radar Interferometry to Monitor Glaciers with Complex Atmospheric Screen. , 2018, , .		1
225	Air and wet bulb temperature lapse rates and their impact on snowmaking in a Pyrenean ski resort. Theoretical and Applied Climatology, 2019, 135, 1361-1373.	2.8	1
226	Responses of surface water quality to future land cover and climate changes in the Neka River basin, Northern Iran. Environmental Monitoring and Assessment, 2021, 193, 411.	2.7	1
227	Floods downstream the Yesa Reservoir, Spanish Pyrenees. Cuadernos De Investigacion Geografica, 0, 28, 101-108.	1.1	1
228	Observaciones del manto de nieve durante una circunnavegación del casquete de hielo de Groenlandia (primavera de 2014). Cuadernos De Investigacion Geografica, 2016, 42, 369.	1.1	1
229	Integrating scales and LTER methods to better understand the overall dynamics of a mountain protected space: the Ordesa and Monte Perdido National Park. Ecosistemas, 2016, 25, 19-30.	0.4	1
230	The Ordesa and Monte Perdido National Park, Central Pyrenees. World Geomorphological Landscapes, 2014, , 165-172.	0.3	1
231	Análisis de la afluencia de esquiadores a 3 estaciones de esquÃ-del Pirineo aragonés en relación con la disponibilidad de nieve, el calendario vacacional y las condiciones meteorológica. Geographicalia, 2021, , 397-420.	0.1	0
232	Adaptación de la demanda de esquÃ-y del comportamiento de los esquiadores a las condiciones meteorológicas, de nieve y al cambio climático en los Pirineos centrales. Pirineos, 0, 175, 062.	0.6	0