Kang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5874978/publications.pdf

Version: 2024-02-01

36	977	18	29
papers	citations	h-index	g-index
37	37	37	1082
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Chromosomeâ€kevel genome assembly of an agricultural pest, the rice leaffolder <i>Cnaphalocrocis exigua</i> (Crambidae, Lepidoptera). Molecular Ecology Resources, 2022, 22, 307-318.	4.8	7
2	Chromosomeâ€level genome assembly of the mirid predator <i>Cyrtorhinus lividipennis</i> Reuter (Hemiptera: Miridae), an important natural enemy in the rice ecosystem. Molecular Ecology Resources, 2022, 22, 1086-1099.	4.8	7
3	InsectBase 2.0: a comprehensive gene resource for insects. Nucleic Acids Research, 2022, 50, D1040-D1045.	14.5	74
4	Using transcriptome Shannon entropy to evaluate the off-target effects and safety of insecticidal siRNAs. Journal of Integrative Agriculture, 2022, 21, 170-177.	3.5	2
5	Chromosomalâ€level genomes of three rice planthoppers provide new insights into sex chromosome evolution. Molecular Ecology Resources, 2021, 21, 226-237.	4.8	44
6	A chromosomeâ€level genome assembly of rice leaffolder, <i>Cnaphalocrocis medinalis</i> Molecular Ecology Resources, 2021, 21, 561-572.	4.8	15
7	InSexBase: an annotated genomic resource of sex chromosomes and sex-biased genes in insects. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	3
8	A chromosomeâ€level assembly of the harlequin ladybird <i>Harmonia axyridis</i> as a genomic resource to study beetle and invasion biology. Molecular Ecology Resources, 2021, 21, 1318-1332.	4.8	17
9	Large-Scale Annotation and Evolution Analysis of MiRNA in Insects. Genome Biology and Evolution, 2021, 13, .	2.5	15
10	Diet-derived transmission of MicroRNAs from host plant into honey bee Midgut. BMC Genomics, 2021, 22, 587.	2.8	4
11	Anatomical Comparison of Antennal Lobes in Two Sibling Ectropis Moths: Emphasis on the Macroglomerular Complex. Frontiers in Physiology, 2021, 12, 685012.	2.8	2
12	Comparative Genomics Sheds Light on the Convergent Evolution of Miniaturized Wasps. Molecular Biology and Evolution, 2021, 38, 5539-5554.	8.9	11
13	Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps) Tj ETQq1 1 0 population of the host. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 248, 109112.	0.784314 r 2.6	rgBT /Overlock 20
14	Impact of landfill garbage on insect ecology and human health. Acta Tropica, 2020, 211, 105630.	2.0	24
15	Genetic engineering and bacterial pathogenesis against the vectorial capacity of mosquitoes. Microbial Pathogenesis, 2020, 147, 104391.	2.9	1
16	A chromosomeâ€level genome assembly provides new insights into paternal genome elimination in the cotton mealybug <i>Phenacoccus solenopsis</i>). Molecular Ecology Resources, 2020, 20, 1733-1747.	4.8	12
17	Identification and Analysis of MicroRNAs Associated with Wing Polyphenism in the Brown Planthopper, Nilaparvata lugens. International Journal of Molecular Sciences, 2020, 21, 9754.	4.1	8
18	FastD: Fast detection of insecticide targetâ€site mutations and overexpressed detoxification genes in insect populations from RNAâ€Seq data. Ecology and Evolution, 2020, 10, 14346-14358.	1.9	1

#	Article	IF	Citations
19	The Roles of DNA Methyltransferases 1 (DNMT1) in Regulating Sexual Dimorphism in the Cotton Mealybug, Phenacoccus solenopsis. Insects, 2020, 11, 121.	2.2	10
20	Transgenic micro <scp>RNA</scp> â€14 rice shows high resistance to rice stem borer. Plant Biotechnology Journal, 2019, 17, 461-471.	8.3	46
21	Progress and prospects of noncoding RNAs in insects. Journal of Integrative Agriculture, 2019, 18, 729-747.	3.5	21
22	A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nature Communications, 2019, 10, 4237.	12.8	102
23	miR-34 modulates wing polyphenism in planthopper. PLoS Genetics, 2019, 15, e1008235.	3.5	50
24	microRNA-14 as an efficient suppressor to switch off ecdysone production after ecdysis in insects. RNA Biology, 2019, 16, 1313-1325.	3.1	28
25	Insect genomes: progress and challenges. Insect Molecular Biology, 2019, 28, 739-758.	2.0	115
26	The functional difference of eight chitinase genes between male and female of the cotton mealybug, <i>Phenacoccus solenopsis</i> . Insect Molecular Biology, 2019, 28, 550-567.	2.0	39
27	LncRNAs are potentially involved in the immune interaction between small brown planthopper and rice stripe virus. Journal of Integrative Agriculture, 2019, 18, 2814-2822.	3.5	21
28	The vitellogenin receptor has an essential role in vertical transmission of rice stripe virus during oogenesis in the small brown plant hopper. Pest Management Science, 2019, 75, 1370-1382.	3.4	17
29	WaspBase: a genomic resource for the interactions among parasitic wasps, insect hosts and plants. Database: the Journal of Biological Databases and Curation, 2018, 2018, 1-9.	3.0	3
30	The genomic features of parasitism, Polyembryony and immune evasion in the endoparasitic wasp Macrocentrus cingulum. BMC Genomics, 2018, 19, 420.	2.8	53
31	Functional analysis of eight chitinase genes in rice stem borer and their potential application in pest control. Insect Molecular Biology, 2018, 27, 835-846.	2.0	17
32	Multiple miRNAs jointly regulate the biosynthesis of ecdysteroid in the holometabolous insects, <i>Chilo suppressalis</i> . Rna, 2017, 23, 1817-1833.	3.5	35
33	ACE: an efficient and sensitive tool to detect insecticide resistance-associated mutations in insect acetylcholinesterase from RNA-Seq data. BMC Bioinformatics, 2017, 18, 330.	2.6	28
34	Large-scale analysis reveals that the genome features of simple sequence repeats are generally conserved at the family level in insects. BMC Genomics, 2017, 18, 848.	2.8	48
35	Genome Sizes of Nine Insect Species Determined by Flow Cytometry and k-mer Analysis. Frontiers in Physiology, 2016, 7, 569.	2.8	36
36	Comparison of research methods for functional characterization of insect olfactory receptors. Scientific Reports, 2016, 6, 32806.	3.3	41