
Chaoyang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5874848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions. Polymer Chemistry, 2013, 4, 4601.	1.9	242
2	Simple, Reversible Emulsion System Switched by pH on the Basis of Chitosan without Any Hydrophobic Modification. Langmuir, 2012, 28, 11017-11024.	1.6	225
3	Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction. Journal of Materials Chemistry A, 2018, 6, 3258-3263.	5.2	202
4	Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery. International Journal of Pharmaceutics, 2006, 308, 160-167.	2.6	193
5	Dual Physically Cross-Linked Hydrogels with High Stretchability, Toughness, and Good Self-Recoverability. Macromolecules, 2016, 49, 5660-5668.	2.2	191
6	Nitrogen-Rich and Fire-Resistant Carbon Aerogels for the Removal of Oil Contaminants from Water. ACS Applied Materials & Interfaces, 2014, 6, 6351-6360.	4.0	178
7	A Quadrupleâ€Hydrogenâ€Bonded Supramolecular Binder for Highâ€Performance Silicon Anodes in Lithiumâ€Ion Batteries. Small, 2018, 14, e1801189.	5.2	171
8	Alkaline lignin extracted from furfural residues for pH-responsive Pickering emulsions and their recyclable polymerization. Green Chemistry, 2012, 14, 3230.	4.6	159
9	Fabrication of Hierarchical Macroporous Biocompatible Scaffolds by Combining Pickering High Internal Phase Emulsion Templates with Three-Dimensional Printing. ACS Applied Materials & Interfaces, 2017, 9, 22950-22958.	4.0	145
10	Multilayer composite microcapsules synthesized by Pickering emulsion templates and their application in self-healing coating. Journal of Materials Chemistry A, 2015, 3, 13749-13757.	5.2	143
11	Thermoresponsive Melamine Sponges with Switchable Wettability by Interface-Initiated Atom Transfer Radical Polymerization for Oil/Water Separation. ACS Applied Materials & Interfaces, 2017, 9, 8967-8974.	4.0	138
12	Lignin-based Pickering HIPEs for macroporous foams and their enhanced adsorption of copper(ii) ions. Chemical Communications, 2013, 49, 7144.	2.2	136
13	Chitosan nanoparticles as particular emulsifier for preparation of novel pH-responsive Pickering emulsions and PLGA microcapsules. Polymer, 2012, 53, 1229-1235.	1.8	134
14	Multifunctional foams derived from poly(melamine formaldehyde) as recyclable oil absorbents. Journal of Materials Chemistry A, 2014, 2, 9994-9999.	5.2	134
15	Lithiophilic Zn Sites in Porous CuZn Alloy Induced Uniform Li Nucleation and Dendrite-free Li Metal Deposition. Nano Letters, 2020, 20, 2724-2732.	4.5	134
16	Hydrodynamically Driven Selfâ€Assembly of Giant Vesicles of Metal Nanoparticles for Remoteâ€Controlled Release. Angewandte Chemie - International Edition, 2013, 52, 2463-2468.	7.2	118
17	New loading process and release properties of insulin from polysaccharide microcapsules fabricated through layer-by-layer assembly. Journal of Controlled Release, 2006, 112, 79-87.	4.8	117
18	Facile Fabrication of Poly(<scp>l</scp> -lactic Acid)-Grafted Hydroxyapatite/Poly(lactic- <i>co</i> -glycolic Acid) Scaffolds by Pickering High Internal Phase Emulsion Templates. ACS Applied Materials & Interfaces, 2014, 6, 17166-17175.	4.0	114

#	Article	IF	CITATIONS
19	Renewable Lignin-Based Xerogels with Self-Cleaning Properties and Superhydrophobicity. ACS Sustainable Chemistry and Engineering, 2014, 2, 1729-1733.	3.2	103
20	Fabrication of Graphene-Based Xerogels for Removal of Heavy Metal Ions and Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2015, 3, 1056-1065.	3.2	103
21	Oil Absorbents Based on Melamine/Lignin by a Dip Adsorbing Method. ACS Sustainable Chemistry and Engineering, 2015, 3, 3012-3018.	3.2	103
22	Alginate–calcium carbonate porous microparticle hybrid hydrogels with versatile drug loading capabilities and variable mechanical strengths. Carbohydrate Polymers, 2008, 71, 476-480.	5.1	101
23	Magnetic hydrogels with supracolloidal structures prepared by suspension polymerization stabilized by Fe2O3 nanoparticles. Acta Biomaterialia, 2010, 6, 275-281.	4.1	100
24	Deposition temperature effect on release rate of indomethacin microcrystals from microcapsules of layer-by-layer assembled chitosan and alginate multilayer films. Journal of Controlled Release, 2005, 106, 319-328.	4.8	99
25	Pickering emulsion-based fabrication of epoxy and amine microcapsules for dual core self-healing coating. Composites Science and Technology, 2016, 133, 51-59.	3.8	99
26	Suspension polymerization based on inverse Pickering emulsion droplets for thermo-sensitive hybrid microcapsules with tunable supracolloidal structures. Polymer, 2009, 50, 2587-2594.	1.8	91
27	Versatile Fabrication of Nanocomposite Microcapsules with Controlled Shell Thickness and Low Permeability. ACS Applied Materials & amp; Interfaces, 2013, 5, 2495-2502.	4.0	90
28	Dynamic Supramolecular Hydrogels: Regulating Hydrogel Properties through Self-Complementary Quadruple Hydrogen Bonds and Thermo-Switch. ACS Macro Letters, 2017, 6, 641-646.	2.3	90
29	Spontaneous repairing liquid metal/Si nanocomposite as a smart conductive-additive-free anode for lithium-ion battery. Nano Energy, 2018, 50, 359-366.	8.2	89
30	Low Chemically Cross-Linked PAM/C-Dot Hydrogel with Robustness and Superstretchability in Both As-Prepared and Swelling Equilibrium States. Macromolecules, 2016, 49, 3174-3183.	2.2	87
31	Multilayer nanocapsules of polysaccharide chitosan and alginate through layer-by-layer assembly directly on PS nanoparticles for release. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 909-923.	1.9	86
32	500 Wh kg ^{â^'1} Class Li Metal Battery Enabled by a Selfâ€Organized Core–Shell Composite Anode. Advanced Materials, 2020, 32, e2004793.	11.1	86
33	Fabrication of drug-loaded biodegradable microcapsules for controlled release by combination of solvent evaporation and layer-by-layer self-assembly. International Journal of Pharmaceutics, 2007, 338, 165-173.	2.6	84
34	Fabrication of novel core-shell hybrid alginate hydrogel beads. International Journal of Pharmaceutics, 2008, 351, 104-112.	2.6	83
35	Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes. Nano Research, 2020, 13, 2259-2267.	5.8	82
36	Facile fabrication of graphene–polypyrrole–Mn composites as high-performance electrodes for capacitive deionization. Journal of Materials Chemistry A, 2015, 3, 5866-5874.	5.2	79

#	Article	IF	CITATIONS
37	Facile fabrication of nanocomposite microspheres with polymer cores and magnetic shells by Pickering suspension polymerization. Reactive and Functional Polymers, 2009, 69, 750-754.	2.0	78
38	Self-Regulated Phenomenon of Inorganic Artificial Solid Electrolyte Interphase for Lithium Metal Batteries. Nano Letters, 2020, 20, 4029-4037.	4.5	78
39	Synergistic stabilization and tunable structures of Pickering high internal phase emulsions by nanoparticles and surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 1-9.	2.3	77
40	Facile preparation of bioactive nanoparticle/poly(Îμ-caprolactone) hierarchical porous scaffolds via 3D printing of high internal phase Pickering emulsions. Journal of Colloid and Interface Science, 2019, 545, 104-115.	5.0	76
41	Selfâ€Healing Gelatin Hydrogels Crossâ€Linked by Combining Multiple Hydrogen Bonding and Ionic Coordination. Macromolecular Rapid Communications, 2017, 38, 1700018.	2.0	74
42	Flexible polyimides through one-pot synthesis as water-soluble binders for silicon anodes in lithium ion batteries. Journal of Power Sources, 2018, 379, 26-32.	4.0	69
43	Novel Lignin-Derived Water-Soluble Binder for Micro Silicon Anode in Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 12621-12629.	3.2	68
44	Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries. Journal of Power Sources, 2018, 406, 102-109.	4.0	66
45	Hybrid hydrogel sheets that undergo pre-programmed shape transformations. Soft Matter, 2014, 10, 8157-8162.	1.2	65
46	Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries. Energy Storage Materials, 2022, 47, 453-461.	9.5	63
47	Emulsion-Templated Liquid Coreâ "Polymer Shell Microcapsule Formation. Langmuir, 2009, 25, 2572-2574.	1.6	62
48	Growth of lightly crosslinked PHEMA brushes and capsule formation using pickering emulsion interfaceâ€initiated ATRP. Journal of Polymer Science Part A, 2009, 47, 1354-1367.	2.5	61
49	Hierarchical porous polymeric microspheres as efficient adsorbents and catalyst scaffolds. Chemical Communications, 2013, 49, 8761.	2.2	60
50	Mineralization and drug release of hydroxyapatite/poly(l -lactic acid) nanocomposite scaffolds prepared by Pickering emulsion templating. Colloids and Surfaces B: Biointerfaces, 2014, 122, 559-565.	2.5	60
51	PVA/Carbon Dot Nanocomposite Hydrogels for Simple Introduction of Ag Nanoparticles with Enhanced Antibacterial Activity. Macromolecular Materials and Engineering, 2016, 301, 1352-1362.	1.7	60
52	A robust aqueous-processable polymer binder for long-life, high-performance lithium sulfur battery. Energy Storage Materials, 2019, 21, 61-68.	9.5	58
53	High tensibility and pH-responsive swelling of nanocomposite hydrogels containing the positively chargeable 2-(dimethylamino)ethyl methacrylate monomer. Reactive and Functional Polymers, 2010, 70, 267-271.	2.0	57
54	Multifunctional, robust sponges by a simple adsorption–combustion method. Journal of Materials Chemistry A, 2015, 3, 5875-5881.	5.2	57

#	Article	IF	CITATIONS
55	Ultralight, robustly compressible and super-hydrophobic biomass-decorated carbonaceous melamine sponge for oil/water separation with high oil retention. Applied Surface Science, 2019, 489, 922-929.	3.1	57
56	Facile preparation of artemisia argyi oil-loaded antibacterial microcapsules by hydroxyapatite-stabilized Pickering emulsion templating. Colloids and Surfaces B: Biointerfaces, 2013, 112, 96-102.	2.5	56
57	Fabrication of mesoporous graphene electrodes with enhanced capacitive deionization. Electrochimica Acta, 2015, 182, 183-191.	2.6	56
58	Surface modification of melamine sponges for pH-responsive oil absorption and desorption. Applied Surface Science, 2017, 416, 798-804.	3.1	56
59	Fabrication of Inverse Opal via Ordered Highly Charged Colloidal Spheres. Langmuir, 2002, 18, 9116-9120.	1.6	55
60	Oneâ€Pot Fabrication of a Novel Agarâ€Polyacrylamide/Graphene Oxide Nanocomposite Double Network Hydrogel with High Mechanical Properties. Advanced Engineering Materials, 2016, 18, 1799-1807.	1.6	55
61	Pickering high internal phase emulsion-based hydroxyapatite–poly(ε-caprolactone) nanocomposite scaffolds. Journal of Materials Chemistry Β, 2015, 3, 3848-3857.	2.9	54
62	Rapid cell sheet detachment from alginate semi-interpenetrating nanocomposite hydrogels of PNIPAm and hectorite clay. Reactive and Functional Polymers, 2011, 71, 447-454.	2.0	52
63	A self-healing polymeric material: from gel to plastic. Journal of Materials Chemistry A, 2014, 2, 11049.	5.2	52
64	Enhanced Resistance of Polyelectrolyte Multilayer Microcapsules to Pepsin Erosion and Release Properties of Encapsulated Indomethacin. Biomacromolecules, 2007, 8, 1739-1744.	2.6	51
65	Vesicular Self-Assembly of Colloidal Amphiphiles in Microfluidics. ACS Applied Materials & Interfaces, 2013, 5, 9746-9751.	4.0	51
66	Macroporous antibacterial hydrogels with tunable pore structures fabricated by using Pickering high internal phase emulsions as templates. Polymer Chemistry, 2014, 5, 4227-4234.	1.9	51
67	Aqueous-processable polymer binder with strong mechanical and polysulfide-trapping properties for high performance of lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 18660-18668.	5.2	51
68	Fast deswelling and highly extensible poly(N-isopropylacrylamide)-hectorite clay nanocomposite cryogels prepared by freezing polymerization. Polymer, 2013, 54, 1846-1852.	1.8	50
69	Facile fabrication of well-defined hydrogel beads with magnetic nanocomposite shells. International Journal of Pharmaceutics, 2009, 376, 92-98.	2.6	49
70	Water-based phytic acid-crosslinked supramolecular binders for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 395, 124981.	6.6	49
71	An Injectable Hydrogel with Excellent Selfâ€Healing Property Based on Quadruple Hydrogen Bonding. Macromolecular Chemistry and Physics, 2016, 217, 2172-2181.	1.1	48
72	Polyurethane-based nanoparticles as stabilizers for oil-in-water or water-in-oil Pickering emulsions. Journal of Materials Chemistry A, 2013, 1, 5353.	5.2	46

#	Article	IF	CITATIONS
73	Facile fabrication of biocompatible PLGA drug-carrying microspheres by O/W pickering emulsions. Colloids and Surfaces B: Biointerfaces, 2012, 91, 97-105.	2.5	45
74	Nitrogen-doped graphene composites as efficient electrodes with enhanced capacitive deionization performance. RSC Advances, 2014, 4, 63189-63199.	1.7	45
75	Chitosan scaffolds for recyclable adsorption of Cu(<scp>ii</scp>) ions. RSC Advances, 2014, 4, 3864-3872.	1.7	44
76	Large amplitude oscillatory shear rheology for nonlinear viscoelasticity in hectorite suspensions containing poly(ethylene glycol). Polymer, 2011, 52, 1402-1409.	1.8	43
77	Green Design of Si/SiO ₂ /C Composites as High-Performance Anodes for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 3884-3892.	2.5	43
78	Dual nanocomposite multihollow polymer microspheres prepared by suspension polymerization based on a multiple pickering emulsion. Polymer Chemistry, 2010, 1, 75-77.	1.9	42
79	Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Colloids and Surfaces B: Biointerfaces, 2016, 140, 382-391.	2.5	41
80	Fabrication of Anion-Exchange Polymer Layered Graphene–Melamine Electrodes for Membrane Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2017, 5, 325-333.	3.2	41
81	Synthesis and micelle formation of triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene) Tj ETQq1	1 0,78431 2.6	4 rgBT /Overl
82	Polyethylenimine and dithiocarbamate decorated melamine sponges for fast copper (II) ions removal from aqueous solution. Applied Surface Science, 2018, 445, 471-477.	3.1	40
83	Facile Fabrication of Hybrid Colloidosomes with Alginate Gel Cores and Shells of Porous CaCO3 Microparticles. ChemPhysChem, 2007, 8, 1157-1160.	1.0	39
84	Specific Anion Effects on the Growth of a Polyelectrolyte Multilayer in Single and Mixed Electrolyte Solutions Investigated with Quartz Crystal Microbalance. Journal of Physical Chemistry B, 2010, 114, 9987-9993.	1.2	39
85	Hollow nanotubular clay composited comb-like methoxy poly(ethylene glycol) acrylate polymer as solid polymer electrolyte for lithium metal batteries. Electrochimica Acta, 2020, 340, 135995.	2.6	39
86	Tumor microenvironment-responsive, high internal phase Pickering emulsions stabilized by lignin/chitosan oligosaccharide particles for synergistic cancer therapy. Journal of Colloid and Interface Science, 2021, 591, 352-362.	5.0	39
87	One-pot synthesis of photoluminescent carbon nanodots by carbonization of cyclodextrin and their application in Ag ⁺ detection. RSC Advances, 2014, 4, 62446-62452.	1.7	38
88	Facile fabrication of nanocomposite microcapsules by combining layer-by-layer self-assembly and Pickering emulsion templating. RSC Advances, 2014, 4, 16751-16758.	1.7	38
89	Fabrication of degradable polymer microspheres via pH-responsive chitosan-based Pickering emulsion photopolymerization. RSC Advances, 2014, 4, 29344-29351.	1.7	38
90	Self-Propelling Hydrogel/Emulsion-Hydrogel Soft Motors for Water Purification. ACS Applied Materials & Interfaces, 2016, 8, 9413-9422.	4.0	37

#	Article	IF	CITATIONS
91	Fabrication of Tunable Janus Microspheres with Dual Anisotropy of Porosity and Magnetism. Langmuir, 2013, 29, 5138-5144.	1.6	36
92	Novel Nanocomposite Hydrogels Consisting of Câ€Đots with Excellent Mechanical Properties. Macromolecular Materials and Engineering, 2015, 300, 1043-1048.	1.7	36
93	Magnesio-mechanochemical reduced SiO for high-performance lithium ion batteries. Journal of Power Sources, 2018, 407, 112-122.	4.0	36
94	A Triblock Copolymer Design Leads to Robust Hybrid Hydrogels for High-Performance Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 36301-36310.	4.0	34
95	Bio-catalytic nanoparticles with urease immobilized in multilayer assembled through layer-by-layer technique. Reactive and Functional Polymers, 2005, 63, 85-94.	2.0	33
96	One-pot fabrication of magnetic nanocomposite microcapsules. Materials Letters, 2009, 63, 884-886.	1.3	33
97	Self-Healing Double-Cross-Linked Supramolecular Binders of a Polyacrylamide-Grafted Soy Protein Isolate for Li–S Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 12799-12808.	3.2	33
98	Capsule clusters fabricated by polymerization based on capsule-in-water-in-oil Pickering emulsions. Polymer Chemistry, 2013, 4, 5407.	1.9	32
99	Functional nanoparticle-decorated graphene oxide sheets as stabilizers for Pickering high internal phase emulsions and graphene oxide based foam monoliths. RSC Advances, 2015, 5, 103394-103402.	1.7	32
100	Porous Ag/polymer composite microspheres for adsorption and catalytic degradation of organic dyes in aqueous solutions. Composites Science and Technology, 2015, 107, 137-144.	3.8	32
101	Simple fabrication of multi-functional melamine sponges. Materials Letters, 2017, 190, 119-122.	1.3	32
102	An efficient polymer coating for highly acid-stable zeolitic imidazolate frameworks based composite sponges. Journal of Hazardous Materials, 2020, 382, 121057.	6.5	32
103	Ambient-temperature fabrication of melamine-based sponges coated with hydrophobic lignin shells by surface dip adsorbing for oil/water separation. RSC Advances, 2016, 6, 106928-106934.	1.7	31
104	Synthesis of triblock copolymer polydopamine-polyacrylic-polyoxyethylene with excellent performance as a binder for silicon anode lithium-ion batteries. RSC Advances, 2018, 8, 4604-4609.	1.7	31
105	3D printing of Pickering emulsion inks to construct poly(D,L-lactide-co-trimethylene carbonate)-based porous bioactive scaffolds with shape memory effect. Journal of Materials Science, 2021, 56, 731-745.	1.7	31
106	Hollow magnetic Janus microspheres templated from double Pickering emulsions. RSC Advances, 2012, 2, 5510.	1.7	30
107	Halloysite nanotubes as particulate emulsifier: Preparation of biocompatible drugâ€carrying PLCA microspheres based on pickering emulsion. Journal of Applied Polymer Science, 2012, 125, E358.	1.3	30
108	Surfactant-Free Multiple Pickering Emulsions Stabilized by Combining Hydrophobic and Hydrophilic Nanoparticles. Journal of Dispersion Science and Technology, 2013, 34, 173-181.	1.3	30

#	Article	IF	CITATIONS
109	Highly Stretchable, Mechanically Strong, Tough, and Selfâ€Recoverable Nanocomposite Hydrogels by Introducing Strong Ionic Coordination Interactions. Macromolecular Chemistry and Physics, 2016, 217, 2717-2725.	1.1	30
110	Synthesis of silicon anode binders with ultra-high content of catechol groups and the effect of molecular weight on battery performance. Journal of Power Sources, 2020, 463, 228188.	4.0	30
111	Natural Cocoons Enabling Flexible and Stable Fabric Lithium–Sulfur Full Batteries. Nano-Micro Letters, 2021, 13, 84.	14.4	30
112	Preferential Adsorption of Poly(ethylene glycol) on Hectorite Clay and Effects on Poly(N-isopropylacrylamide)/Hectorite Nanocomposite Hydrogels. Langmuir, 2010, 26, 4233-4238.	1.6	29
113	One-step synthesis of porous graphene-based hydrogels containing oil droplets for drug delivery. RSC Advances, 2014, 4, 3211-3218.	1.7	29
114	An <i>in situ</i> photopolymerized composite solid electrolyte from halloysite nanotubes and comb-like polycaprolactone for high voltage lithium metal batteries. Journal of Materials Chemistry A, 2021, 9, 9826-9836.	5.2	29
115	Charge density threshold for LbL self-assembly and small molecule diffusion in polyelectrolyte multilayer films. Polymer, 2005, 46, 4958-4966.	1.8	27
116	Multihollow nanocomposite microspheres with tunable pore structures by templating Pickering double emulsions. Reactive and Functional Polymers, 2013, 73, 1231-1241.	2.0	27
117	Compressible nanowood/polymer composite adsorbents for wastewater purification applications. Composites Science and Technology, 2020, 198, 108320.	3.8	27
118	Mesomorphous Structure and Properties of Non-equimolar Complexes of Poly(Ethylenimine) and Perfluorooctanoic Acid. Langmuir, 2004, 20, 10737-10743.	1.6	25
119	Fe2O3 nanoparticles as particulate emulsifier: Preparation of magnetic and biocompatible PLGA microcapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392, 116-123.	2.3	25
120	FeIII chelated organic anode with ultrahigh rate performance and ultra-long cycling stability for lithium-ion batteries. Energy Storage Materials, 2020, 24, 432-438.	9.5	25
121	Low-Cost and Environmentally Friendly Biopolymer Binders for Li–S Batteries. Macromolecules, 2020, 53, 8539-8547.	2.2	25
122	Transition metal oxides as lithium-free cathodes for solid-state lithium metal batteries. Nano Energy, 2020, 74, 104867.	8.2	25
123	Linear and nonlinear viscoelasticity of water-in-oil emulsions: Effect of droplet elasticity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434, 220-228.	2.3	24
124	Understanding the lithium dendrites growth in garnet-based solid-state lithium metal batteries. Journal of Power Sources, 2022, 521, 230921.	4.0	24
125	Poly(acrylamide) microgel-reinforced poly(acrylamide)/hectorite nanocomposite hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 1-8.	2.3	22
126	Novel multi-block conductive binder with polybutadiene for Si anodes in lithium-ion batteries. Electrochimica Acta, 2019, 315, 58-66.	2.6	22

#	Article	IF	CITATIONS
127	A three-dimensional crosslinked chitosan sulfate network binder for high-performance Li–S batteries. Journal of Energy Chemistry, 2021, 56, 171-178.	7.1	22
128	Graphene/cyclodextrin-based nanocomposite hydrogel with enhanced strength and thermo-responsive ability. Carbohydrate Polymers, 2017, 174, 804-811.	5.1	21
129	Exploiting Pulping Waste as an Ecofriendly Multifunctional Binder for Lithium Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 8413-8418.	3.2	21
130	An ultrahigh-areal-capacity SiOx negative electrode for lithium ion batteries. Journal of Power Sources, 2020, 464, 228244.	4.0	21
131	Significant Structure Change in Nonequimolar Complexes of Poly(ethylenimine) and Octadecanoic Acid Induced by Polymer Backbone Branching. Macromolecules, 2006, 39, 6552-6557.	2.2	20
132	Microcapsules for controlled release fabricated via layer-by-layer self-assembly of polyelectrolytes. Journal of Experimental Nanoscience, 2008, 3, 133-145.	1.3	20
133	Promoted cell proliferation and mechanical relaxation of nanocomposite hydrogels prepared in cell culture medium. Reactive and Functional Polymers, 2013, 73, 683-689.	2.0	20
134	Highly flexible polymer-carbon dot-ferric ion nanocomposite hydrogels displaying super stretchability, ultrahigh toughness, good self-recovery and shape memory performance. European Polymer Journal, 2017, 95, 482-490.	2.6	20
135	Emulsion Hydrogel Soft Motor Actuated by Thermal Stimulation. ACS Applied Materials & Interfaces, 2017, 9, 43211-43219.	4.0	20
136	Multifunctional Fluoroethylene Carbonate for Improving High-Temperature Performance of LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ SiO _{<i>x</i>} @Graphite Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 9989-10000.	2.5	19
137	Facile fabrication of polystyrene/halloysite nanotube microspheres with core–shell structure via Pickering suspension polymerization. Polymer Bulletin, 2012, 69, 765-777.	1.7	18
138	Oneâ€Pot Fabrication of Rattle‣ike Capsules with Multicores by Pickeringâ€Based Polymerization with Nanoparticle Nucleation. Macromolecular Rapid Communications, 2014, 35, 1414-1418.	2.0	18
139	Oneâ€Pot Fabrication of Poly(εâ€Caprolactone)â€Incorporated Bovine Serum Albumin/Calcium Alginate/Hydroxyapatite Nanocomposite Scaffolds by High Internal Phase Emulsion Templates. Macromolecular Materials and Engineering, 2017, 302, 1600367.	1.7	18
140	Novel Structure Change in Nonequimolar Complexes of Linear Poly(ethylenimine) and Octadecanoic Acid:Â Effects of Composition. Macromolecules, 2005, 38, 5675-5680.	2.2	17
141	Enzymatic desorption of layer-by-layer assembled multilayer films and effects on the release of encapsulated indomethacin microcrystals. Carbohydrate Research, 2007, 342, 2237-2243.	1.1	17
142	Facile, controlled, large scale fabrication of novel capsule clusters. RSC Advances, 2013, 3, 4514.	1.7	16
143	Facile Fabrication of Water Dispersible Latex Particles with Homogeneous or Chain-Segregated Surface from RAFT Polymerization Using a Mixture of Two Macromolecular Chain Transfer Agents. Macromolecular Rapid Communications, 2016, 37, 691-699.	2.0	16
144	Multi-stage hydrogel rockets with stage dropping-off by thermal/light stimulation. Journal of Materials Chemistry A, 2018, 6, 16838-16843.	5.2	16

#	Article	IF	CITATIONS
145	In Situ-Cross-linked Supramolecular Eco-Binders for Improved Capacity and Stability of Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 3803-3811.	2.5	15
146	Preparation of Highly Charged, Monodisperse Nanospheres. Macromolecular Chemistry and Physics, 2002, 203, 673-677.	1.1	14
147	Transportation and release of Janus micromotors by two-stage rocket hydrogel. Journal of Materials Chemistry A, 2017, 5, 18442-18447.	5.2	14
148	Overcharge Investigations of LiCoO ₂ /Graphite Lithium Ion Batteries with Different Electrolytes. ACS Applied Energy Materials, 2019, 2, 8615-8624.	2.5	14
149	Cationic cyclization of styrene–butadiene rubber. European Polymer Journal, 2001, 37, 1895-1899.	2.6	13
150	Facile Fabrication of Macroporous PLGA Microspheres via Doubleâ€Pickering Emulsion Templates. Macromolecular Chemistry and Physics, 2015, 216, 714-720.	1.1	13
151	In situ cyclization modification in polymerization of butadiene by rare earth coordination catalyst. Materials Chemistry and Physics, 2005, 89, 116-121.	2.0	12
152	Novel Nanocellulose/Polymer Composite Aerogel as Solid‣tate Fluorescence Probe by Pickering Emulsion Route. Macromolecular Materials and Engineering, 2020, 305, 2000467.	1.7	12
153	Colloidosomes formation by controlling the solvent extraction from particle-stabilized emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 592-596.	2.3	11
154	Generating lithium fluoride-abundant interphase on layered lithium-rich oxide cathode with lithium 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide. Journal of Power Sources, 2021, 507, 230278.	4.0	11
155	Artificial solid electrolyte interphase modified porous SiO composite as anode material for lithium ion batteries. Solid State Ionics, 2020, 347, 115272.	1.3	10
156	Fluorescence observations on complex formation between linear and hyperbranched polyelectrolytes in dilute aqueous solutions. European Polymer Journal, 2005, 41, 185-191.	2.6	9
157	Redox responsive diselenide colloidosomes templated from Pickering emulsions for drug release. Journal of Controlled Release, 2015, 213, e119-e120.	4.8	9
158	Pickering Emulsion-Based Marbles for Cellular Capsules. Materials, 2016, 9, 572.	1.3	9
159	Water-Based Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 29316-29323.	4.0	9
160	Stable Lithium Metal Anodes with a GaO <i>_x</i> Artificial Solid Electrolyte Interphase in Damp Air. ACS Applied Materials & Interfaces, 2021, 13, 21467-21473.	4.0	9
161	A Supramolecular Hydrogel Enabled by the Synergy of Hydrophobic Interaction and Quadruple Hydrogen Bonding. Gels, 2022, 8, 244.	2.1	9
162	Fluorescence study of chromophore labeled strong polyelectrolyte bound with oppositely charged surfactant. Colloid and Polymer Science, 2002, 280, 814-821.	1.0	8

#	Article	IF	CITATIONS
163	Synthesis of multiblock copolymers of poly(2-vinylpyridine) and polyoxyethylene. Journal of Applied Polymer Science, 2003, 88, 1632-1636.	1.3	8
164	The jamming and unjamming transition in poly(N-isopropylacrylamide) microgel suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 912-921.	2.3	8
165	A Fourâ€Armed Polyacrylic Acid Homopolymer Binder with Enhanced Performance for SiO <i>_x</i> /Graphite Anode. Macromolecular Materials and Engineering, 2021, 306, .	1.7	8
166	Metal chelation based supramolecular self-assembly enables a high-performance organic anode for lithium ion batteries. Chemical Engineering Journal, 2021, 413, 127525.	6.6	8
167	Cathode-anode reaction products interplay enabling high performance of LiNi0.8Co0.1Mn0.1O2/artificial graphite pouch batteries at elevated temperature. Journal of Power Sources, 2021, 514, 230583.	4.0	8
168	Fluorescence decay and quenching of pyrene labeled on sulfonate polyelectrolytes in salt-free aqueous solutions. European Polymer Journal, 2003, 39, 697-703.	2.6	7
169	NRET from naphthalene labels in multilayer shell wall on melamine formaldehyde microparticles fabricated with layer-by-layer self-assembly to pyrene-labeled polyelectrolyte in solution. European Polymer Journal, 2006, 42, 161-166.	2.6	7
170	Adsorption of fluorophores and N-isopropylacrylamide on Laponite. Applied Clay Science, 2012, 58, 102-107.	2.6	7
171	Scaling of the dynamic response of hectorite clay suspensions containing poly(ethylene glycol) along the universal route of aging. Soft Matter, 2013, 9, 6263.	1.2	7
172	Thermoâ€Moldable Nanocomposite Hydrogels. Macromolecular Materials and Engineering, 2015, 300, 57-63.	1.7	7
173	Roomâ€Temperature Solidâ€State Lithium Metal Batteries Using Metal Organic Framework Composited Combâ€Like Methoxy Poly(ethylene glycol) Acrylate Solid Polymer Electrolytes. Macromolecular Materials and Engineering, 2021, 306, 2100336.	1.7	7
174	Preparation of colloidal crystals with polyhedral building blocks through post-polymerization. Colloid and Polymer Science, 2004, 282, 651-655.	1.0	6
175	Macroporous Nanocomposite Materials Prepared by Solvent Evaporation from Pickering Emulsion Templates. Macromolecular Materials and Engineering, 2014, 299, 1070-1080.	1.7	6
176	Synergistic Stabilization of High Internal Phase Pickering Emulsions by a Mixture of Nanoparticle and Polymer. Acta Chimica Sinica, 2012, 70, 133.	0.5	6
177	Preparation of Colloidosome Microcapsules Based on Particle Stabilized Photo-Crosslinkable Pickering Emulsions. Acta Chimica Sinica, 2012, 70, 1721.	0.5	6
178	Binding on strong polyelectrolytes of mixed ionic and nonionic surfactants below their critical micelle concentration observed by fluorescence. Colloid and Polymer Science, 2003, 282, 141-148.	1.0	5
179	Multilayer Shell Walls with Versatile Electron Transfer Properties. Macromolecular Rapid Communications, 2007, 28, 1167-1171.	2.0	5
180	LiCoO2/Graphite Cells with Localized High Concentration Carbonate Electrolytes for Higher Energy Density. Liquids, 2021, 1, 60-74.	0.8	5

#	Article	IF	CITATIONS
181	Infrared radiation triggered detachable bio-adhesive hybrid hydrogels. Journal of Controlled Release, 2015, 213, e102-e103.	4.8	4
182	Nanocomposite porous scaffolds for bone tissue engineering by emulsion templating. Journal of Controlled Release, 2015, 213, e127.	4.8	3
183	Cationic cyclization of neoprene with a diethylaluminum chloride and organic chloride catalyst system. Journal of Applied Polymer Science, 2002, 86, 2227-2231.	1.3	2
184	Preparation of Amphiphilic Diselenide Copolymer and Formation of Its Aggregates. Acta Chimica Sinica, 2013, 71, 1136.	0.5	2
185	Facile Preparation of Core-Shell Nanocomposite Microgels. Journal of Macromolecular Science - Physics, 2014, 53, 52-66.	0.4	1
186	Synthesis of Multiblock Copolymers of Poly(2-vinylpyridine) and Polyoxyethylene and their Application as Compatibilizers for Epichlorohydrin Rubber/Poly(Vinyl Chloride) Blends. Polymers and Polymer Composites, 2005, 13, 191-198.	1.0	0
187	MoS2 armored polystyrene particles with a narrow size distribution via membrane-assisted Pickering emulsions for monolayer-shelled liquid marbles. RSC Advances, 2015, 5, 80424-80427.	1.7	0