David Chatenet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5874796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring the use of intracellular and extracellular allosteric modulators to understand GPCR signaling. , 2022, , 135-160.		2
2	Lipidated peptides derived from intracellular loops 2 and 3 of the urotensin II receptor act as biased allosteric ligands. Journal of Biological Chemistry, 2021, 297, 101057.	3.4	4
3	Perturbing dimer interactions and allosteric communication modulates the immunosuppressive activity of human galectin-7. Journal of Biological Chemistry, 2021, 297, 101308.	3.4	5
4	Binding of a Soluble <i>meso</i> -Tetraarylporphyrin to Human Galectin-7 Induces Oligomerization and Modulates Its Pro-Apoptotic Activity. Biochemistry, 2020, 59, 4591-4600.	2.5	4
5	Insights into the Molecular Determinants Involved in Urocontrin and Urocontrin A Action. ACS Medicinal Chemistry Letters, 2020, 11, 1717-1722.	2.8	3
6	Spt5 Phosphorylation and the Rtf1 Plus3 Domain Promote Rtf1 Function through Distinct Mechanisms. Molecular and Cellular Biology, 2020, 40, .	2.3	7
7	Targeting the PAC1 Receptor for Neurological and Metabolic Disorders. Current Topics in Medicinal Chemistry, 2019, 19, 1399-1417.	2.1	43
8	Design and biological assessment of membrane-tethering neuroprotective peptides derived from the pituitary adenylate cyclase-activating polypeptide type 1 receptor. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129398.	2.4	7
9	Towards Targeting the Urotensinergic System: Overview and Challenges. Trends in Pharmacological Sciences, 2019, 40, 725-734.	8.7	10
10	The amidated PACAP1–23 fragment is a potent reduced-size neuroprotective agent. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129410.	2.4	5
11	Functional Selectivity Revealed by N-Methylation Scanning of Human Urotensin II and Related Peptides. Journal of Medicinal Chemistry, 2019, 62, 1455-1467.	6.4	18
12	New directions for urotensin II receptor ligands. Peptide Science, 2019, 111, e24056.	1.8	6
13	New insights about the peculiar role of the 28–38 C-terminal segment and some selected residues in PACAP for signaling and neuroprotection. Biochemical Pharmacology, 2018, 154, 193-202.	4.4	10
14	A New Approach to Inhibit Prototypic Galectins. Trends in Glycoscience and Glycotechnology, 2018, 30, SE155-SE165.	0.1	2
15	Antibacterial properties of the pituitary adenylate cyclase-activating polypeptide: A new human antimicrobial peptide. PLoS ONE, 2018, 13, e0207366.	2.5	7
16	Discovery of New Allosteric Modulators of the Urotensinergic System through Substitution of the Urotensin II-Related Peptide (URP) Phenylalanine Residue. Journal of Medicinal Chemistry, 2018, 61, 8707-8716.	6.4	12
17	Intracellular Angiotensinâ€II Interacts With Nuclear Angiotensin Receptors in Cardiac Fibroblasts and Regulates RNA Synthesis, Cell Proliferation, and Collagen Secretion. Journal of the American Heart Association, 2017, 6, .	3.7	43
18	Understanding GPCR signaling in the brain- the path to CNS drug discovery. Current Opinion in Pharmacology, 2017, 32, v-vii.	3.5	1

DAVID CHATENET

#	Article	IF	CITATIONS
19	Insight into the role of urotensin II-related peptide tyrosine residue in UT activation. Biochemical Pharmacology, 2017, 144, 100-107.	4.4	9
20	Design, Synthesis, and Biological Assessment of Biased Allosteric Modulation of the Urotensin II Receptor Using Achiral 1,3,4-Benzotriazepin-2-one Turn Mimics. Journal of Medicinal Chemistry, 2017, 60, 9838-9859.	6.4	18
21	Urotensin core mimics that modulate the biological activity of urotensin-II related peptide but not urotensin-II. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3412-3416.	2.2	11
22	Peptide modification results in the formation of a dimer with a 60-fold enhanced antimicrobial activity. PLoS ONE, 2017, 12, e0173783.	2.5	23
23	Design of peptidic inhibitors targeting the dimerization interface of galectins. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C99-C99.	0.1	0
24	Urotensin II ^(4–11) Azasulfuryl Peptides: Synthesis and Biological Activity. Journal of Medicinal Chemistry, 2016, 59, 4740-4752.	6.4	27
25	Characterizations of a synthetic pituitary adenylate cyclase-activating polypeptide analog displaying potent neuroprotective activity and reduced inÂvivo cardiovascular side effects in a Parkinson's disease model. Neuropharmacology, 2016, 108, 440-450.	4.1	44
26	Effect of the pituitary adenylate cyclase-activating polypeptide on the autophagic activation observed in in vitro and in vivo models of Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 688-695.	3.8	22
27	Caged ligands to study the role of intracellular GPCRs. Methods, 2016, 92, 72-77.	3.8	15
28	The Pharmacophoric Determinants of PACAP. Current Topics in Neurotoxicity, 2016, , 111-132.	0.4	1
29	PACAP-Derived Carriers: Mechanisms and Applications. Current Topics in Neurotoxicity, 2016, , 133-148.	0.4	2
30	<i>De Novo</i> Conception of Small Molecule Modulators Based on Endogenous Peptide Ligands: Pyrrolodiazepin-2-one l³-Turn Mimics That Differentially Modulate Urotensin II Receptor-Mediated Vasoconstriction <i>ex Vivo</i> . Journal of Medicinal Chemistry, 2015, 58, 4624-4637.	6.4	26
31	Photoreleasable ligands to study intracrine angiotensin II signalling. Journal of Physiology, 2015, 593, 521-539.	2.9	16
32	Optimization of on-resin palladium-catalyzed Sonogashira cross-coupling reaction for peptides and its use in a structure–activity relationship study of a class B GPCR ligand. European Journal of Medicinal Chemistry, 2015, 104, 106-114.	5.5	7
33	International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, Urotensin II–Related Peptide, and Their Receptor: From Structure to Function. Pharmacological Reviews, 2015, 67, 214-258.	16.0	82
34	Design of a peptidic inhibitor that targets the dimer interface of a prototypic galectin. Oncotarget, 2015, 6, 40970-40980.	1.8	21
35	Design and Application of Light-Activated Probes for Cellular Signaling. Methods in Molecular Biology, 2015, 1234, 17-30.	0.9	1

36 Synthesis of N-Methyl and Azasulfuryl Urotensin-II(4-11) Derivatives. , 2015, , .

0

DAVID CHATENET

#	Article	IF	CITATIONS
37	Secondary conformational conversion is involved in glycosaminoglycansâ€mediated cellular uptake of the cationic cellâ€penetrating peptide PACAP. FEBS Letters, 2014, 588, 4590-4596.	2.8	27
38	Design of a Truncated Cardiotoxin-I Analogue with Potent Insulinotropic Activity. Journal of Medicinal Chemistry, 2014, 57, 2623-2633.	6.4	11
39	Intracrine endothelin signaling evokes IP3-dependent increases in nucleoplasmic Ca2+ in adult cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2013, 62, 189-202.	1.9	43
40	Discovery of new antagonists aimed at discriminating <scp>UII</scp> and <scp>URP</scp> â€mediated biological activities: insight into <scp>UII</scp> and <scp>URP</scp> receptor activation. British Journal of Pharmacology, 2013, 168, 807-821.	5.4	31
41	Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors. Journal of Molecular and Cellular Cardiology, 2013, 62, 58-68.	1.9	45
42	Development and Pharmacological Characterization of Conformationally Constrained Urotensin II-Related Peptide Agonists. Journal of Medicinal Chemistry, 2013, 56, 9612-9622.	6.4	15
43	Update on the urotensinergic system: new trends in receptor localization, activation, and drug design. Frontiers in Endocrinology, 2013, 3, 174.	3.5	21
44	PACAP., 2013, , 1038-1043.		0
45	Presence of urotensin-II receptors at the cell nucleus: Specific tissue distribution and hypoxia-induced modulation. International Journal of Biochemistry and Cell Biology, 2012, 44, 639-647.	2.8	13
46	Design and characterization of novel cell-penetrating peptides from pituitary adenylate cyclase-activating polypeptide. Journal of Controlled Release, 2012, 163, 256-265.	9.9	20
47	Cardiotoxinâ€k An Unexpectedly Potent Insulinotropic Agent. ChemBioChem, 2012, 13, 1805-1812.	2.6	21
48	Receptor-independent cellular uptake of pituitary adenylate cyclase-activating polypeptide. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 940-949.	4.1	29
49	Urocontrin, a novel UT receptor ligand with a unique pharmacological profile. Biochemical Pharmacology, 2012, 83, 608-615.	4.4	25
50	Characterization of iodinated adrenomedullin derivatives suitable for lung nuclear medicine. Nuclear Medicine and Biology, 2011, 38, 867-874.	0.6	5
51	Novel dimeric DOTA-coupled peptidic Y1-receptor antagonists for targeting of neuropeptide Y receptor-expressing cancers. EJNMMI Research, 2011, 1, 21.	2.5	11
52	Design and in vitro characterization of PAC1/VPAC1-selective agonists with potent neuroprotective effects. Biochemical Pharmacology, 2011, 81, 552-561.	4.4	40
53	The vasoactive peptides urotensin II and urotensin II-related peptide regulate astrocyte activity through common and distinct mechanisms: involvement in cell proliferation. Biochemical Journal, 2010, 428, 113-124.	3.7	50
54	Urotensin II, from fish to human. Annals of the New York Academy of Sciences, 2010, 1200, 53-66.	3.8	90

DAVID CHATENET

#	Article	IF	CITATIONS
55	Characterization of the adrenomedullin receptor acting as the target of a new radiopharmaceutical biomolecule for lung imaging. European Journal of Pharmacology, 2009, 617, 118-123.	3.5	8
56	Characterization of urotensin II, distribution of urotensin II, urotensin IIâ€related peptide and UT receptor mRNAs in mouse: evidence of urotensin II at the neuromuscular junction. Journal of Neurochemistry, 2008, 107, 361-374.	3.9	40
57	Structure–activity relationships of urotensin II and URP. Peptides, 2008, 29, 658-673.	2.4	56
58	[Orn5]URP acts as a pure antagonist of urotensinergic receptors in rat cortical astrocytes. Peptides, 2008, 29, 813-819.	2.4	8
59	Effect of GABAA receptor activation on UT-coupled signaling pathways in rat cortical astrocytes. Peptides, 2008, 29, 727-734.	2.4	8
60	Effects of urotensin-II on cerebral blood flow and ischemia in anesthetized rats. Experimental Neurology, 2008, 210, 577-584.	4.1	11
61	Distribution of 26RFa binding sites and GPR103 mRNA in the central nervous system of the rat. Journal of Comparative Neurology, 2007, 503, 573-591.	1.6	65
62	Structureâ `Activity Relationships of a Novel Series of Urotensin II Analogues:  Identification of a Urotensin II Antagonist. Journal of Medicinal Chemistry, 2006, 49, 7234-7238.	6.4	30
63	Catabolism of the octadecaneuropeptide ODN by prolyl endopeptidase: Identification of an unusual cleavage site. Peptides, 2006, 27, 1561-1569.	2.4	11
64	Anatomical distribution and biochemical characterization of the novel RFamide peptide 26RFa in the human hypothalamus and spinal cord. Journal of Neurochemistry, 2006, 99, 616-627.	3.9	69
65	Biochemical and functional characterization of high-affinity urotensin II receptors in rat cortical astrocytes. Journal of Neurochemistry, 2006, 99, 582-595.	3.9	50
66	Localization of the urotensin II receptor in the rat central nervous system. Journal of Comparative Neurology, 2006, 495, 21-36.	1.6	60
67	Behavioral effects of urotensin-II centrally administered in mice. Psychopharmacology, 2005, 183, 103-117.	3.1	47
68	Urotensin-II is present in pancreatic extracts and inhibits insulin release in the perfused rat pancreas. European Journal of Endocrinology, 2004, 151, 803-809.	3.7	44
69	Biochemical characterization and immunohistochemical localization of urotensin II in the human brainstem and spinal cord. Journal of Neurochemistry, 2004, 91, 110-118.	3.9	40
70	Structure–activity relationships and structural conformation of a novel urotensin II-related peptide. Peptides, 2004, 25, 1819-1830.	2.4	95
71	Structure–Activity Relationships of Human Urotensin II and Related Analogues on Rat Aortic Ring Contraction. Journal of Enzyme Inhibition and Medicinal Chemistry, 2003, 18, 77-88.	5.2	76
72	Synthesis of P-chiral enephosphonic acid derivatives. Journal of Organometallic Chemistry, 2002, 662, 83-97.	1.8	9