Xiaopeng Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5874763/publications.pdf Version: 2024-02-01

XIAODENC YII

#	Article	IF	CITATIONS
1	OsRLR4 binds to the <i>OsAUX1</i> promoter to negatively regulate primary root development in rice. Journal of Integrative Plant Biology, 2022, 64, 118-134.	8.5	7
2	Biphasic control of cell expansion by auxin coordinates etiolated seedling development. Science Advances, 2022, 8, eabj1570.	10.3	19
3	Alternative transcription and feedback regulation suggest that <i>SIIDI1</i> is involved in tomato carotenoid synthesis in a complex way Horticulture Research, 2022, 9, .	6.3	10
4	WRKY33â€mediated indolic glucosinolate metabolic pathway confers resistance against <i>Alternaria brassicicola</i> in <i>Arabidopsis</i> and <i>Brassica</i> crops. Journal of Integrative Plant Biology, 2022, 64, 1007-1019.	8.5	21
5	Mediator complex subunit MED25 physically interacts with DST to regulate spikelet number in rice. Journal of Integrative Plant Biology, 2022, 64, 871-883.	8.5	9
6	Identification of Genes Involved in Root Growth Inhibition Under Lead Stress by Transcriptome Profiling in Arabidopsis. Plant Molecular Biology Reporter, 2021, 39, 50-59.	1.8	10
7	Coordinated cytokinin signaling and auxin biosynthesis mediates arsenate-induced root growth inhibition. Plant Physiology, 2021, 185, 1166-1181.	4.8	16
8	Mediator tail module subunits MED16 and MED25 differentially regulate abscisic acid signaling in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 802-815.	8.5	23
9	SIBES1 promotes tomato fruit softening through transcriptional inhibition of PMEU1. IScience, 2021, 24, 102926.	4.1	34
10	Overexpression of <i><scp>FBR</scp>41</i> enhances resistance to sphinganine analog mycotoxinâ€induced cell death and <i>Alternaria</i> stem canker in tomato. Plant Biotechnology Journal, 2020, 18, 141-154.	8.3	17
11	A Transcriptional Network Promotes Anthocyanin Biosynthesis in Tomato Flesh. Molecular Plant, 2020, 13, 42-58.	8.3	149
12	Mediator Subunit MED25 Couples Alternative Splicing of <i>JAZ</i> Genes with Fine-Tuning of Jasmonate Signaling. Plant Cell, 2020, 32, 429-448.	6.6	64
13	Mediator subunit MED25: at the nexus of jasmonate signaling. Current Opinion in Plant Biology, 2020, 57, 78-86.	7.1	39
14	Mediator Subunit MED25 Physically Interacts with PHYTOCHROME INTERACTING FACTOR4 to Regulate Shade-Induced Hypocotyl Elongation in Tomato. Plant Physiology, 2020, 184, 1549-1562.	4.8	31
15	O3-Induced Priming Defense Associated With the Abscisic Acid Signaling Pathway Enhances Plant Resistance to Bemisia tabaci. Frontiers in Plant Science, 2020, 11, 93.	3.6	17
16	The Arabidopsis Nodulin Homeobox Factor AtNDX Interacts with AtRING1A/B and Negatively Regulates Abscisic Acid Signaling. Plant Cell, 2020, 32, 703-721.	6.6	29
17	<i>Oryza sativa</i> mediator subunit OsMED25 interacts with OsBZR1 to regulate brassinosteroid signaling and plant architecture in rice. Journal of Integrative Plant Biology, 2020, 62, 793-811.	8.5	24
18	A biotechnologyâ€based maleâ€sterility system for hybrid seed production in tomato. Plant Journal, 2020, 102, 1090-1100.	5.7	52

XIAOPENG YU

#	Article	IF	CITATIONS
19	SEUSS integrates transcriptional and epigenetic control of root stem cell organizer specification. EMBO Journal, 2020, 39, e105047.	7.8	28
20	Insect Feeding Assays with Spodoptera exigua on Arabidopsis thaliana. Bio-protocol, 2020, 10, e3538.	0.4	2
21	LEUNIG_HOMOLOG Mediates MYC2-Dependent Transcriptional Activation in Cooperation with the Coactivators HAC1 and MED25. Plant Cell, 2019, 31, 2187-2205.	6.6	51
22	Rapid breeding of pink-fruited tomato hybrids using the CRISPR/Cas9 system. Journal of Genetics and Genomics, 2019, 46, 505-508.	3.9	26
23	MED25 connects enhancer–promoter looping and MYC2-dependent activation of jasmonate signalling. Nature Plants, 2019, 5, 616-625.	9.3	82
24	The plant Mediator complex and its role in jasmonate signaling. Journal of Experimental Botany, 2019, 70, 3415-3424.	4.8	55
25	A Jasmonate Signaling Network Activates Root Stem Cells and Promotes Regeneration. Cell, 2019, 177, 942-956.e14.	28.9	233
26	Variation in both host defense and prior herbivory can alter plant-vector-virus interactions. BMC Plant Biology, 2019, 19, 556.	3.6	10
27	The auxin influx carrier, OsAUX3, regulates rice root development and responses to aluminium stress. Plant, Cell and Environment, 2019, 42, 1125-1138.	5.7	57
28	MYC2 Regulates the Termination of Jasmonate Signaling via an Autoregulatory Negative Feedback Loop. Plant Cell, 2019, 31, 106-127.	6.6	173
29	<scp>BIG</scp> regulates stomatal immunity and jasmonate production in Arabidopsis. New Phytologist, 2019, 222, 335-348.	7.3	24
30	Expression of tomato prosystemin gene in <i>Arabidopsis</i> reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance. New Phytologist, 2018, 217, 799-812.	7.3	39
31	Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. Journal of Genetics and Genomics, 2018, 45, 51-54.	3.9	97
32	Mediator subunit MED31 is required for radial patterning of <i>Arabidopsis</i> roots. Proceedings of the United States of America, 2018, 115, E5624-E5633.	7.1	26
33	O3-Induced Leaf Senescence in Tomato Plants Is Ethylene Signaling-Dependent and Enhances the Population Abundance of Bemisia tabaci. Frontiers in Plant Science, 2018, 9, 764.	3.6	7
34	Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genetics, 2018, 14, e1007144.	3.5	152
35	Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8930-E8939.	7.1	135
36	Mechanical regulation of organ asymmetry in leaves. Nature Plants, 2017, 3, 724-733.	9.3	110

XIAOPENG YU

#	Article	IF	CITATIONS
37	UBIQUITIN-SPECIFIC PROTEASE 14 interacts with ULTRAVIOLET-B INSENSITIVE 4 to regulate endoreduplication and cell and organ growth in Arabidopsis. Plant Cell, 2016, 28, tpc.00007.2016.	6.6	35
38	Differential Regulation of Clathrin and Its Adaptor Proteins during Membrane Recruitment for Endocytosis. Plant Physiology, 2016, 171, 215-229.	4.8	56
39	Elevated O3 increases volatile organic compounds via jasmonic acid pathway that promote the preference of parasitoid Encarsia formosa for tomato plants. Plant Science, 2016, 253, 243-250.	3.6	9
40	Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6562-6567.	7.1	93
41	RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Research, 2016, 26, 686-698.	12.0	144
42	Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by <i>Trichoderma</i> spp Journal of Experimental Botany, 2016, 67, 2191-2205.	4.8	42
43	Toward a Molecular Understanding of Plant Hormone Actions. Molecular Plant, 2016, 9, 1-3.	8.3	7
44	The auxin transporter, Os <scp>AUX</scp> 1, is involved in primary root and root hair elongation and in Cd stress responses in rice (<i>OryzaAsativa</i> L.). Plant Journal, 2015, 83, 818-830.	5.7	144
45	A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications, 2015, 6, 8821.	12.8	70
46	Toward Understanding the Stem-Cell Origin and Molecular Regulation of Rice Tillering. Journal of Genetics and Genomics, 2015, 42, 47-48.	3.9	3
47	Elevated ozone induces jasmonic acid defense of tomato plants and reduces midgut proteinase activity in <i><scp>H</scp>elicoverpa armigera</i> . Entomologia Experimentalis Et Applicata, 2015, 154, 188-198.	1.4	7
48	Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis. Plant Cell, 2015, 27, tpc.15.00619.	6.6	177
49	Suppression of Photosynthetic Gene Expression in Roots Is Required for Sustained Root Growth under Phosphate Deficiency Â. Plant Physiology, 2014, 165, 1156-1170.	4.8	71
50	OsMOGS is required for <i>N</i> â€glycan formation and auxinâ€mediated root development in rice (<i>Oryza sativa</i> L.). Plant Journal, 2014, 78, 632-645.	5.7	45
51	Closely Related NAC Transcription Factors of Tomato Differentially Regulate Stomatal Closure and Reopening during Pathogen Attack Â. Plant Cell, 2014, 26, 3167-3184.	6.6	153
52	The Rice Semi-Dwarf Mutant sd37, Caused by a Mutation in CYP96B4, Plays an Important Role in the Fine-Tuning of Plant Growth. PLoS ONE, 2014, 9, e88068.	2.5	32
53	Role of Tomato Lipoxygenase D in Wound-Induced Jasmonate Biosynthesis and Plant Immunity to Insect Herbivores. PLoS Genetics, 2013, 9, e1003964.	3.5	166
54	<i>Arabidopsis thaliana</i> plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen <i>Alternaria brassicicola</i> . New Phytologist, 2012, 195, 872-882.	7.3	107

XIAOPENG YU

#	Article	IF	CITATIONS
55	Elevated O3 reduces the fitness of Bemisia tabaci via enhancement of the SA-dependent defense of the tomato plant. Arthropod-Plant Interactions, 2012, 6, 425-437.	1.1	22
56	Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein. New Phytologist, 2011, 191, 360-375.	7.3	131
57	Toward understanding the molecular mechanisms governing plant hormone actions: A brief introduction to the major research program "Molecular mechanisms of plant hormone actions― funded by the national natural science foundation of china (NSFC). Science Bulletin, 2010, 55, 2197-2197.	1.7	4
58	Identification and Characterization of Bmi-1-responding Element within the Human p16 Promoter*. Journal of Biological Chemistry, 2010, 285, 33219-33229.	3.4	51
59	A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, .	2.8	73