

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5874760/publications.pdf Version: 2024-02-01

YINTI

#	Article	IF	CITATIONS
1	Trace Element Analysis of Borrelia burgdorferi by Inductively Coupled Plasma-Sector Field Mass Spectrometry. Methods in Molecular Biology, 2018, 1690, 83-94.	0.4	1
2	BosR Is A Novel Fur Family Member Responsive to Copper and Regulating Copper Homeostasis in Borrelia burgdorferi. Journal of Bacteriology, 2017, 199, .	1.0	12
3	A high-throughput genetic screen identifies previously uncharacterized Borrelia burgdorferi genes important for resistance against reactive oxygen and nitrogen species. PLoS Pathogens, 2017, 13, e1006225.	2.1	36
4	Lyme borreliosis. Nature Reviews Disease Primers, 2016, 2, 16090.	18.1	530
5	BosR Functions as a Repressor of the ospAB Operon in Borrelia burgdorferi. PLoS ONE, 2014, 9, e109307.	1.1	26
6	Emergence of Ixodes scapularis and Borrelia burgdorferi, the Lyme disease vector and agent, in Ohio. Frontiers in Cellular and Infection Microbiology, 2014, 4, 70.	1.8	23
7	TRIF Mediates Toll-Like Receptor 2-Dependent Inflammatory Responses to Borrelia burgdorferi. Infection and Immunity, 2013, 81, 402-410.	1.0	54
8	Tick-Specific Borrelial Antigens Appear to Be Upregulated in American but Not European Patients With Lyme Arthritis, a Late Manifestation of Lyme Borreliosis. Journal of Infectious Diseases, 2013, 208, 934-941.	1.9	16
9	<i><scp>B</scp>orrelia burgdorferi</i> oxidative stress regulator <scp>BosR</scp> directly represses lipoproteins primarily expressed in the tick during mammalian infection. Molecular Microbiology, 2013, 89, 1140-1153.	1.2	40
10	A novel iron―and copperâ€binding protein in the <scp>L</scp> yme disease spirochaete. Molecular Microbiology, 2012, 86, 1441-1451.	1.2	50
11	Borrelia burgdorferi RST1 (OspC Type A) Genotype Is Associated with Greater Inflammation and More Severe Lyme Disease. American Journal of Pathology, 2011, 178, 2726-2739.	1.9	105
12	Burden and viability of <i>Borrelia burgdorferi</i> in skin and joints of patients with erythema migrans or lyme arthritis. Arthritis and Rheumatism, 2011, 63, 2238-2247.	6.7	124
13	Ehrlichia chaffeensis Induces Monocyte Inflammatory Responses through MyD88, ERK, and NF-κB but Not through TRIF, Interleukin-1 Receptor 1 (IL-1R1)/IL-18R1, or Toll-Like Receptors. Infection and Immunity, 2011, 79, 4947-4956.	1.0	32
14	Treg cell numbers and function in patients with antibioticâ€refractory or antibioticâ€responsive lyme arthritis. Arthritis and Rheumatism, 2010, 62, 2127-2137.	6.7	49
15	Oxygen-Limiting Conditions Enrich for Fimbriate Cells of Uropathogenic <i>Proteus mirabilis</i> and <i>Escherichia coli</i> . Journal of Bacteriology, 2009, 191, 1382-1392.	1.0	44
16	A Differential Role for BB0365 in the Persistence ofBorrelia burgdorferiin Mice and Ticks. Journal of Infectious Diseases, 2008, 197, 148-155.	1.9	52
17	Outer Surface Protein B Is Critical for Borrelia burgdorferi Adherence and Survival within Ixodes Ticks. PLoS Pathogens, 2007, 3, e33.	2.1	78
18	Role of Outer Surface Protein D in the <i>Borrelia burgdorferi</i> Life Cycle. Infection and Immunity, 2007, 75, 4237-4244.	1.0	36

Xin Li

#	Article	IF	CITATIONS
19	The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticks. Molecular Microbiology, 2007, 63, 694-710.	1.2	110
20	Coinfection withBorrelia burgdorferisensu stricto andBorrelia gariniialters the course of murine Lyme borreliosis. FEMS Immunology and Medical Microbiology, 2007, 49, 224-234.	2.7	15
21	Borrelia burgdorferi Lacking BBK32, a Fibronectin-Binding Protein, Retains Full Pathogenicity. Infection and Immunity, 2006, 74, 3305-3313.	1.0	87
22	Association of Linear Plasmid 28-1 with an Arthritic Phenotype of Borrelia burgdorferi. Infection and Immunity, 2005, 73, 7208-7215.	1.0	33
23	Development of an Intranasal Vaccine To Prevent Urinary Tract Infection by Proteus mirabilis. Infection and Immunity, 2004, 72, 66-75.	1.0	67
24	Use of Translational Fusion of the MrpH Fimbrial Adhesin-Binding Domain with the Cholera Toxin A2 Domain, Coexpressed with the Cholera Toxin B Subunit, as an Intranasal Vaccine To Prevent Experimental Urinary Tract Infection by Proteus mirabilis. Infection and Immunity, 2004, 72, 7306-7310.	1.0	37
25	Proteus mirabilis Genes That Contribute to Pathogenesis of Urinary Tract Infection: Identification of 25 Signature-Tagged Mutants Attenuated at Least 100-Fold. Infection and Immunity, 2004, 72, 2922-2938.	1.0	172
26	TROSPA, an Ixodes scapularis Receptor for Borrelia burgdorferi. Cell, 2004, 119, 457-468.	13.5	348
27	Visualization of Proteus mirabilis within the Matrix of Urease-Induced Bladder Stones during Experimental Urinary Tract Infection. Infection and Immunity, 2002, 70, 389-394.	1.0	88
28	Vaccines for Proteus mirabilis in urinary tract infection. International Journal of Antimicrobial Agents, 2002, 19, 461-465.	1.1	44
29	Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Molecular Microbiology, 2002, 45, 865-874.	1.2	66
30	Repression of bacterial motility by a novel fimbrial gene product. EMBO Journal, 2001, 20, 4854-4862.	3.5	81
31	Identification of DNA Sequences from a Second Pathogenicity Island of UropathogenicEscherichia coliCFT073: Probes Specific for Uropathogenic Populations. Journal of Infectious Diseases, 2001, 184, 1041-1049.	1.9	49
32	Pathogenesis of Proteus mirabilisurinary tract infection. Microbes and Infection, 2000, 2, 1497-1505.	1.0	149
33	Identification of protease and rpoN-associated genes of uropathogenic Proteus mirabilis by negative selection in a mouse model of ascending urinary tract infection. Microbiology (United Kingdom), 1999, 145, 185-195.	0.7	68
34	Requirement of MrpH for Mannose-Resistant <i>Proteus</i> -Like Fimbria-Mediated Hemagglutination by <i>Proteus mirabilis</i> . Infection and Immunity, 1999, 67, 2822-2833.	1.0	55
35	MrpB Functions as the Terminator for Assembly of <i>Proteus mirabilis</i> Mannose-Resistant <i>Proteus</i> -Like Fimbriae. Infection and Immunity, 1998, 66, 1759-1763.	1.0	16
36	In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract. Molecular Microbiology, 1997, 23, 1009-1019.	1.2	91

	Xin Li	.1	
#	Article	IF	CITATIONS
37	Proteus mirabilis mannose-resistant, Proteus-like fimbriae: MrpG is located at the fimbrial tip and is required for fimbrial assembly. Infection and Immunity, 1997, 65, 1327-1334.	1.0	31