
Jae Hyuck Yoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5874662/publications.pdf Version: 2024-02-01

INE HYLICK YOO

#	Article	IF	CITATIONS
1	Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon, 2015, 83, 144-151.	10.3	229
2	Low ost Facile Fabrication of Flexible Transparent Copper Electrodes by Nanosecond Laser Ablation. Advanced Materials, 2015, 27, 2762-2767.	21.0	126
3	Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions. Journal of Physical Chemistry C, 2015, 119, 6363-6372.	3.1	63
4	Graphene folds by femtosecond laser ablation. Applied Physics Letters, 2012, 100, .	3.3	60
5	<i>In Situ</i> TEM Near-Field Optical Probing of Nanoscale Silicon Crystallization. Nano Letters, 2012, 12, 2524-2529.	9.1	49
6	Laserâ€Induced Direct Graphene Patterning and Simultaneous Transferring Method for Graphene Sensor Platform. Small, 2013, 9, 4269-4275.	10.0	47
7	Additive Manufacturing of Optical Quality Germania–Silica Classes. ACS Applied Materials & Interfaces, 2020, 12, 6736-6741.	8.0	39
8	Laser damage mechanisms in conductive widegap semiconductor films. Optics Express, 2016, 24, 17616.	3.4	29
9	Directed dewetting of amorphous silicon film by a donut-shaped laser pulse. Nanotechnology, 2015, 26, 165303.	2.6	25
10	Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials. MRS Bulletin, 2016, 41, 1002-1008.	3.5	25
11	Lifetime laser damage performance of \hat{l}^2 -Ga2O3 for high power applications. APL Materials, 2018, 6, .	5.1	24
12	Physics of picosecond pulse laser ablation. Journal of Applied Physics, 2019, 125, 085103.	2.5	23
13	On Demand Shape-Selective Integration of Individual Vertical Germanium Nanowires on a Si(111) Substrate <i>via</i> Laser-Localized Heating. ACS Nano, 2013, 7, 2090-2098.	14.6	20
14	Scalable Light-Printing of Substrate-Engraved Free-Form Metasurfaces. ACS Applied Materials & Interfaces, 2019, 11, 22684-22691.	8.0	20
15	Facile fabrication of a superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal. Nanotechnology, 2016, 27, 145604.	2.6	19
16	Thermally ruggedized ITO transparent electrode films for high power optoelectronics. Optics Express, 2017, 25, 25533.	3.4	19
17	Substrate-engraved antireflective nanostructured surfaces for high-power laser applications. Optica, 2020, 7, 518.	9.3	19
18	A simple, highly efficient route to electroless gold plating on complex 3D printed polyacrylate plastics. Chemical Communications, 2018, 54, 10463-10466.	4.1	18

Јае Нуиск Үоо

#	Article	IF	CITATIONS
19	Enhanced Tunability of Gold Nanoparticle Size, Spacing, and Shape for Large-Scale Plasmonic Arrays. ACS Applied Nano Materials, 2019, 2, 4395-4401.	5.0	18
20	Single Pass Laser Process for Super-Hydrophobic Flexible Surfaces with Micro/Nano Hierarchical Structures. Materials, 2018, 11, 1226.	2.9	15
21	Generation of single-crystalline domain in nano-scale silicon pillars by near-field short pulsed laser. Applied Physics A: Materials Science and Processing, 2014, 114, 277-285.	2.3	14
22	Tuning Gold Nanoparticle Size with Fixed Interparticle Spacing in Large-Scale Arrays: Implications for Plasmonics and Nanoparticle Etching Masks. ACS Applied Nano Materials, 2021, 4, 2733-2742.	5.0	14
23	Laser welding of vertically aligned carbon nanotube arrays on polymer workpieces. Carbon, 2017, 115, 688-693.	10.3	13
24	Optical damage performance of conductive widegap semiconductors: spatial, temporal, and lifetime modeling. Optical Materials Express, 2017, 7, 202.	3.0	13
25	Optical and electrical properties of indium tin oxide films near their laser damage threshold. Optical Materials Express, 2017, 7, 817.	3.0	13
26	Laser-Induced Crystalline-Phase Transformation for Hematite Nanorod Photoelectrochemical Cells. ACS Applied Materials & Interfaces, 2020, 12, 48917-48927.	8.0	11
27	Laser-induced digital oxidation for copper-based flexible photodetectors. Applied Surface Science, 2021, 540, 148333.	6.1	10
28	Optical modeling of random anti-reflective meta-surfaces for laser systems applications. Applied Optics, 2019, 58, 7558.	1.8	10
29	Synthesis of Nanostructured/Macroscopic Low-Density Copper Foams Based on Metal-Coated Polymer Core–Shell Particles. ACS Applied Materials & Interfaces, 2016, 8, 34706-34714.	8.0	9
30	A Survey of Transparent Conducting Films and Optoelectrical Materials for High Optical Power Applications. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900459.	1.8	6
31	Efficient method for the measurement of lifetime optical damage performance of thin film coatings from laser damage size analysis. Optics Letters, 2017, 42, 3153.	3.3	6
32	Designer Metasurfaces for Antireflective Applications Enabled by Advanced Nanoparticle Technology. Advanced Optical Materials, 0, , 2200151.	7.3	6
33	Large aperture and durable glass-engraved optical metasurfaces using nanoparticle etching masks: prospects and future directions. JPhys Photonics, 2021, 3, 032004.	4.6	5
34	Rapid feedback of chemical vapor deposition growth mechanisms by operando X-ray diffraction. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 020601.	1.2	4
35	Few-cycle optical field breakdown and damage of gallium oxide and gallium nitride. APL Materials, 2022, 10, .	5.1	3
36	Laser-Assisted Tailored Patterning of Au Nanoparticles over an Inch-Sized Area: Implications for Large Aperture Meta-optics. ACS Applied Nano Materials, 2022, 5, 10073-10080.	5.0	3

Јае Нуиск Үоо

#	Article	IF	CITATIONS
37	Localized planarization of optical damage using laser-based chemical vapor deposition. , 2013, , .		2
38	Coupling buried etalon layers to an engraved metasurface for durable and large-aperture meta-optics. Applied Optics, 2020, 59, 8136.	1.8	2
39	Channel Scaling Dependent Photoresponse of Copper-Based Flexible Photodetectors Fabricated Using Laser-Induced Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 6977-6984.	8.0	1
40	Laser-assisted nanoprocessing and growth of semiconductor nanostructures. , 2011, , .		0
41	Laser processing and in-situ diagnostics for crystallization: from thin films to nanostructures. Proceedings of SPIE, 2014, , .	0.8	0
42	Morphology and mechanisms of picosecond ablation of metal films on fused silica substrates. Proceedings of SPIE, 2016, , .	0.8	0
43	Nanosecond laser-induced damage of transparent conducting ITO film at 1064nm. , 2016, , .		0
44	Robust Metasurfaces with Tailored Graded Index for High Power Laser Applications. , 2021, , .		0
45	Laser-Assisted on Demand Growth of Semiconducting Nanowires. , 2013, , .		0
46	Defect-induced optical breakdown in aluminum nitride and gallium nitride epitaxial films. , 2017, , .		0