Boyang Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5874304/publications.pdf

Version: 2024-02-01

58	2,124	23	43
papers	citations	h-index	g-index
63	63	63	2932 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nature Microbiology, 2017, 2, 17044.	13.3	198
2	Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and Healthy Aging, 2016, 4, 3-16.	1.1	150
3	Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica – A Review. Bioresource Technology, 2020, 313, 123707.	9.6	126
4	Modelling approaches for studying the microbiome. Nature Microbiology, 2019, 4, 1253-1267.	13.3	114
5	Combinatorial, additive and dose-dependent drug–microbiome associations. Nature, 2021, 600, 500-505.	27.8	102
6	Microbiome and metabolome features of the cardiometabolic disease spectrum. Nature Medicine, 2022, 28, 303-314.	30.7	102
7	From next-generation sequencing to systematic modeling of the gut microbiome. Frontiers in Genetics, 2015, 6, 219.	2.3	99
8	Meta-analysis of the gut microbiota in predicting response to cancer immunotherapy in metastatic melanoma. JCI Insight, 2020, 5, .	5.0	85
9	Serine/Threonine Protein Kinases from Bacteria, Archaea and Eukarya Share a Common Evolutionary Origin Deeply Rooted in the Tree of Life. Journal of Molecular Biology, 2018, 430, 27-32.	4.2	78
10	Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals. Scientific Reports, 2020, 10, 14977.	3.3	78
11	Comparative genomic analysis provides insights into the evolution and niche adaptation of marine <i><scp>M</scp>agnetospira</i> sp. <scp>QH</scp> â€2 strain. Environmental Microbiology, 2014, 16, 525-544.	3.8	66
12	Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling. Metabolic Engineering, 2018, 49, 128-142.	7.0	65
13	The chimeric nature of the genomes of marine magnetotactic coccoidâ€ovoid bacteria defines a novel group of <scp><i>P</i></scp> <i>roteobacteria</i>	3.8	60
14	Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut, 2022, 71, 2463-2480.	12.1	53
15	FMN reduces Amyloid- \hat{l}^2 toxicity in yeast by regulating redox status and cellular metabolism. Nature Communications, 2020, 11, 867.	12.8	50
16	The First Genomic and Proteomic Characterization of a Deep-Sea Sulfate Reducer: Insights into the Piezophilic Lifestyle of Desulfovibrio piezophilus. PLoS ONE, 2013, 8, e55130.	2.5	44
17	Metagenomic analysis of bile salt biotransformation in the human gut microbiome. BMC Genomics, 2019, 20, 517.	2.8	44
18	Logical transformation of genome-scale metabolic models for gene level applications and analysis. Bioinformatics, 2015, 31, 2324-2331.	4.1	43

#	Article	IF	Citations
19	In vitro co-cultures of human gut bacterial species as predicted from co-occurrence network analysis. PLoS ONE, 2018, 13, e0195161.	2.5	41
20	Insights into the pathways of iron- and sulfur-oxidation, and biofilm formation from the chemolithotrophic acidophile Acidithiobacillus ferrivorans CF27. Research in Microbiology, 2014, 165, 753-760.	2.1	38
21	Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model. BMC Bioinformatics, 2019, 20, 551.	2.6	38
22	Evolution of Bacterial Protein-Tyrosine Kinases and Their Relaxed Specificity Toward Substrates. Genome Biology and Evolution, 2014, 6, 800-817.	2.5	35
23	Interplay of Energetics and ER Stress Exacerbates Alzheimer's Amyloid- \hat{l}^2 (A \hat{l}^2) Toxicity in Yeast. Frontiers in Molecular Neuroscience, 2017, 10, 232.	2.9	28
24	Engineering yeast metabolism for the discovery and production of polyamines and polyamine analogues. Nature Catalysis, 2021, 4, 498-509.	34.4	26
25	Challenges in modeling the human gut microbiome. Nature Biotechnology, 2018, 36, 682-686.	17.5	25
26	Bayesian genome scale modelling identifies thermal determinants of yeast metabolism. Nature Communications, 2021, 12, 190.	12.8	25
27	Advances in Metabolic Engineering of Saccharomyces cerevisiae for Cocoa Butter Equivalent Production. Frontiers in Bioengineering and Biotechnology, 2020, 8, 594081.	4.1	23
28	Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis. Frontiers in Microbiology, 2017, 8, 638.	3.5	22
29	Identification of genes involved in shea butter biosynthesis from Vitellaria paradoxa fruits through transcriptomics and functional heterologous expression. Applied Microbiology and Biotechnology, 2019, 103, 3727-3736.	3.6	19
30	Metabolic Alterations in Older Women With Low Bone Mineral Density Supplemented With <i>Lactobacillus reuteri</i> . JBMR Plus, 2021, 5, e10478.	2.7	18
31	CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial variability induced by diet intervention. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
32	Yeast metabolic innovations emerged via expanded metabolic network and gene positive selection. Molecular Systems Biology, 2021, 17, e10427.	7.2	17
33	Systems Biology of Gastric Cancer: Perspectives on the Omics-Based Diagnosis and Treatment. Frontiers in Molecular Biosciences, 2020, 7, 203.	3.5	16
34	Mapping of Nonhomologous End Joining-Mediated Integration Facilitates Genome-Scale Trackable Mutagenesis in <i>Yarrowia lipolytica</i> i> ACS Synthetic Biology, 2022, 11, 216-227.	3.8	14
35	The pan-genome of Saccharomyces cerevisiae. FEMS Yeast Research, 2019, 19, .	2.3	12
36	Comparative Transcriptome Analysis Shows Conserved Metabolic Regulation during Production of Secondary Metabolites in Filamentous Fungi. MSystems, 2019, 4, .	3.8	12

#	Article	IF	CITATIONS
37	In silico screening for candidate chassis strains of free fatty acid-producing cyanobacteria. BMC Genomics, 2017, 18, 33.	2.8	11
38	Cold adaptation in drylands: transcriptomic insights into coldâ€stressed ⟨i⟩Nostoc flagelliforme⟨/i⟩ and characterization of a hypothetical gene with cold and nitrogen stress tolerance. Environmental Microbiology, 2021, 23, 713-727.	3.8	11
39	Complete Genome Sequence of the Piezophilic, Mesophilic, Sulfate-Reducing Bacterium Desulfovibrio hydrothermalis AM13 ^T . Genome Announcements, 2013, 1, .	0.8	10
40	New insight into the gut microbiome through metagenomics. Advances in Genomics and Genetics, 0, , 77.	0.8	10
41	Carbohydrate active enzymes are affected by diet transition from milk to solid food in infant gut microbiota. FEMS Microbiology Ecology, 2019, 95, .	2.7	10
42	Performance of Regression Models as a Function of Experiment Noise. Bioinformatics and Biology Insights, 2021, 15, 117793222110203.	2.0	9
43	Suppressors of amyloid- \hat{l}^2 toxicity improve recombinant protein production in yeast by reducing oxidative stress and tuning cellular metabolism. Metabolic Engineering, 2022, 72, 311-324.	7.0	9
44	Draft Genome Sequence of the Purple Photosynthetic Bacterium Phaeospirillum molischianum DSM120, a Particularly Versatile Bacterium. Journal of Bacteriology, 2012, 194, 3559-3560.	2.2	8
45	Exploring Gut Microbiota in Patients with Colorectal Disease Based on 16S rRNA Gene Amplicon and Shallow Metagenomic Sequencing. Frontiers in Molecular Biosciences, 2021, 8, 703638.	3.5	8
46	Genome-scale insights into the metabolic versatility of Limosilactobacillus reuteri. BMC Biotechnology, 2021, 21, 46.	3.3	8
47	Integrated Metabolic Modeling, Culturing, and Transcriptomics Explain Enhanced Virulence of Vibrio cholerae during Coinfection with Enterotoxigenic Escherichia coli. MSystems, 2020, 5, .	3.8	8
48	Profiling of Small Molecular Metabolites in Nostoc flagelliforme during Periodic Desiccation. Marine Drugs, 2019, 17, 298.	4.6	7
49	Advances in the Relationships Between Cow's Milk Protein Allergy and Gut Microbiota in Infants. Frontiers in Microbiology, 2021, 12, 716667.	3.5	6
50	Genome Analysis of the Psychrotolerant Acidophile <i>Acidithiobacillus ferrivorans </i> CF27. Advanced Materials Research, 2013, 825, 145-148.	0.3	4
51	Microbial profiling identifies potential key drivers in gastric cancer patients. Biotechnology and Biotechnological Equipment, 2021, 35, 496-503.	1.3	4
52	Editorial: Engineering Yeast to Produce Plant Natural Products. Frontiers in Bioengineering and Biotechnology, 2021, 9, 798097.	4.1	4
53	è,é"èŒç¾ĦŽå®¿ä,»å³ç³»è§£æžåŠè,é"èŒç¾&°f控/啿ˆç"究进展. Scientia Sinica Vitae, 2021, , .	0.3	3
54	Microbial community dynamics revisited. Nature Computational Science, 2021, 1, 640-641.	8.0	2

#	Article	IF	CITATIONS
55	Developments in Fatty Acid-Derived Insect Pheromone Production Using Engineered Yeasts. Frontiers in Microbiology, 2021, 12, 759975.	3.5	2
56	Draft Genome Sequences of Five Fungal Strains Isolated from Kefir. Microbiology Resource Announcements, 2021, 10, e0019521.	0.6	1
57	Characterization of two β-galactosidases LacZ and WspA1 from Nostoc flagelliforme with focus on the latter's central active region. Scientific Reports, 2021, 11, 18448.	3.3	1
58	Dataset for suppressors of amyloid- \hat{l}^2 toxicity and their functions in recombinant protein production in yeast. Data in Brief, 2022, 42, 108322.	1.0	O