Yao Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5874056/publications.pdf

Version: 2024-02-01

109321 123424 4,514 169 35 61 citations h-index g-index papers 172 172 172 3252 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Accurate Loop Gain Modeling of Digitally Controlled Buck Converters. IEEE Transactions on Industrial Electronics, 2022, 69, 725-739.	7.9	9
2	Stability Analysis of Dual Active Bridge Converter With Input Filter and Constant Power Load. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3, 658-669.	3.9	4
3	Modulated Coupled Inductor for Input-Serial–Output-Parallel Dual-Active-Bridge Converter. IEEE Transactions on Industrial Electronics, 2022, 69, 6450-6455.	7.9	9
4	Open-Switch and Current Sensor Fault Diagnosis Strategy for Matrix Converter-Based PMSM Drive System. IEEE Transactions on Transportation Electrification, 2022, 8, 875-885.	7.8	11
5	Optimal Charging Strategy With Complementary Pulse Current Control of Lithium-Ion Battery for Electric Vehicles. IEEE Transactions on Transportation Electrification, 2022, 8, 62-71.	7.8	4
6	Stabilized Negative Resistance Emulating Control for Grid-Connected Inverter. IEEE Transactions on Industrial Electronics, 2022, 69, 8599-8603.	7.9	3
7	Four-Switch Single-Phase Common-Ground PV Inverter With Active Power Decoupling. IEEE Transactions on Industrial Electronics, 2022, 69, 3223-3228.	7.9	19
8	A Local-Distributed and Global-Decentralized SoC Balancing Method for Hybrid Series-Parallel Energy Storage System. IEEE Systems Journal, 2022, 16, 2289-2299.	4.6	5
9	Sliding Mode Control-Based Decoupling Scheme for Quad-Active Bridge DC–DC Converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 1153-1164.	5.4	10
10	Resistance-Emulating Control Strategy for Three-Phase Voltage Source Rectifiers Under Unbalanced Grids. IEEE Transactions on Industrial Electronics, 2022, 69, 1103-1113.	7.9	12
11	A Comprehensive Study on the Existence and Stability of Equilibria of DC-Distribution Networks With Constant Power Loads. IEEE Transactions on Automatic Control, 2022, 67, 1988-1995.	5.7	16
12	A Hybrid Voltage/Current Control Scheme With Low-Communication Burden for Grid-Connected Series-Type Inverters in Decentralized Manner. IEEE Transactions on Power Electronics, 2022, 37, 920-931.	7.9	5
13	Power oscillation suppression in multi-VSG grid with adaptive virtual inertia. International Journal of Electrical Power and Energy Systems, 2022, 135, 107472.	5.5	19
14	Further Results on Newton-Raphson Method in Feasible Power-Flow for DC Distribution Networks. IEEE Transactions on Power Delivery, 2022, 37, 1348-1351.	4.3	17
15	Power-Estimation-Based Synchronous Rectification Solution for Bidirectional DAB-LLC Converter. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1213-1217.	3.0	2
16	An Extremum Seeking Algorithm Based on Square Wave for Three-Dimensional Wireless Power Transfer System to Achieve Maximum Power Transmission. IEEE Transactions on Industry Applications, 2022, 58, 1279-1288.	4.9	7
17	Coordinated control for PV-ESS islanded microgrid without communication. International Journal of Electrical Power and Energy Systems, 2022, 136, 107699.	5.5	11
18	Decentralized Mutual Damping Control of Cascaded-Type VSGs for Power and Frequency Oscillation Suppression. IEEE Transactions on Industrial Electronics, 2022, 69, 10215-10226.	7.9	6

#	Article	IF	Citations
19	Coupled Inductor Based Bidirectional Resonant Converter With Sine Wave Modulation in Wide Voltage Range. IEEE Transactions on Power Electronics, 2022, 37, 3713-3718.	7.9	10
20	Distributed Dynamic Event-Triggered Control for Accurate Active and Harmonic Power Sharing in Modular On-Line UPS Systems. IEEE Transactions on Industrial Electronics, 2022, 69, 13045-13055.	7.9	6
21	An Existence Condition for Power-Flow of DC Microgrids with CPLs Considering Voltage Disturbance and Distributed Generations under MPPT Control. Journal of Physics: Conference Series, 2022, 2166, 012007.	0.4	0
22	An Algebraic Modulation Strategy for 3L-NPC Converters With Inherent Neutral-Point Voltage Balance Capability. IEEE Transactions on Power Electronics, 2022, 37, 7533-7539.	7.9	2
23	ZVS Analysis and Design for Half Bridge Bidirectional LLC-DCX Converter With Consideration of Nonlinear Capacitance and Different Load Under Synchronous Turn-On and Turn-Off Modulation. IEEE Transactions on Transportation Electrification, 2022, 8, 2429-2443.	7.8	9
24	Power Oscillation Suppression of Multi-VSG Grid via Decentralized Mutual Damping Control. IEEE Transactions on Industrial Electronics, 2022, 69, 10202-10214.	7.9	11
25	Conductance Emulating Control Strategy for Three-Phase Current Source Rectifier Under Unbalanced Grid Voltages. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2837-2841.	3.0	7
26	Observer-Based Adaptive Control for Single-Phase UPS Inverter Under Nonlinear Load. IEEE Transactions on Transportation Electrification, 2022, 8, 2785-2796.	7.8	12
27	Stability Analysis of the Interleaved Buck Converter With Coupled Inductor. IEEE Transactions on Transportation Electrification, 2022, 8, 2299-2310.	7.8	3
28	Short-term wind power interval prediction method using VMD-RFG and Att-GRU. Energy, 2022, 251, 123807.	8.8	29
29	Accurate Reactive Power Sharing. Power Systems, 2022, , 67-84.	0.5	0
30	Decentralized Control Strategies in Grid-Connected Mode. Power Systems, 2022, , 195-224.	0.5	0
31	Unified Droop Control Under Different Impedance Types. Power Systems, 2022, , 31-41.	0.5	0
32	A Master–Slave Control in Grid-Connected Applications. Power Systems, 2022, , 225-246.	0.5	0
33	Unified Grid-Connected and Islanded Operation. Power Systems, 2022, , 247-275.	0.5	0
34	Distributed Event-Triggered Control with Less Communication. Power Systems, 2022, , 113-135.	0.5	1
35	Decentralized Method for Islanded Operation Mode. Power Systems, 2022, , 139-148.	0.5	0
36	Dynamic Frequency Regulation Via Adaptive Virtual Inertia. Power Systems, 2022, , 43-65.	0.5	0

#	Article	IF	CITATIONS
37	Leader-Distributed Follower-Decentralized Control Strategy for Economic Dispatch. Power Systems, 2022, , 347-364.	0.5	0
38	Split PCB Winding Transformer for Dual-Active-Bridge Converter with Full Load Range ZVS. , 2022, , .		0
39	Magnetizing and Leakage Inductance Integration for Split Transformers With Standard UI Cores. IEEE Transactions on Power Electronics, 2022, 37, 12980-12985.	7.9	3
40	Solvability and Stability Conditions for the Power Flow equation of DC Microgrid under Master-Slave Control., 2022,,.		0
41	Single-Stage DAB- <i>LLC</i> Hybrid Bidirectional Converter With Tight Voltage Regulation Under DCX Operation. IEEE Transactions on Industrial Electronics, 2021, 68, 293-303.	7.9	48
42	A Decentralized SOC Balancing Method for Cascaded-Type Energy Storage Systems. IEEE Transactions on Industrial Electronics, 2021, 68, 2321-2333.	7.9	26
43	Power Factor Angle Droop Control—A General Decentralized Control of Cascaded Inverters. IEEE Transactions on Power Delivery, 2021, 36, 465-468.	4.3	23
44	A Natural Bidirectional Isolated Single-Phase AC/DC Converter With Wide Output Voltage Range for Aging Test Application in Electric Vehicle. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 3489-3500.	5.4	14
45	Cost-Effective DC Current Suppression for Single-Phase Grid-Connected PV Inverter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 1808-1823.	5.4	9
46	Optimized EPS Control to Achieve Full Load Range ZVS With Seamless Transition for Dual Active Bridge Converters. IEEE Transactions on Industrial Electronics, 2021, 68, 8379-8390.	7.9	81
47	Active Common-Mode Voltage-Based Open-Switch Fault Diagnosis of Inverters in IM-Drive Systems. IEEE Transactions on Industrial Electronics, 2021, 68, 103-115.	7.9	23
48	An LLC-DAB Bidirectional DCX Converter with Wide Load Range ZVS and Reduced Switch Count. IEEE Transactions on Power Electronics, 2021, , 1-1.	7.9	8
49	Design Considerations for PPS Controlled Current-Fed DAB Converter to Achieve Full Load Range ZVS and Low Inductor Current Stress. IEEE Transactions on Industry Applications, 2021, 57, 6261-6276.	4.9	8
50	<scp>Leaderâ€distributed followerâ€decentralized</scp> control strategy for economic dispatch in <scp>cascadedâ€parallel</scp> microgrids. International Transactions on Electrical Energy Systems, 2021, 31, e12964.	1.9	4
51	Modified Topology and PWM Modulation for Bidirectional LLC-DCX Converter with Center-Tapped Transformer., 2021,,.		4
52	A novel distributed control for hybrid AC/DC microgrid with consideration of power limit., 2021,,.		2
53	A Virtual Inertia Control Method for Series-type Inverters System in Islanded Mode., 2021,,.		0
54	An FCS-MPC-based Closed Loop Control for Matrix Converter Under Unbalanced Grids. , 2021, , .		0

#	Article	IF	Citations
55	Solvability Condition of Power-Flow considering current constraints of DGs of DC Microgrids with CPLs., 2021,,.		0
56	Adaptive Power Decoupling Control for Single-Phase Converter With Unbalanced DC-Split-Capacitor Circuit. IEEE Transactions on Power Electronics, 2021, 36, 12127-12136.	7.9	14
57	Current-Fed <i>LC</i> Series Resonant Converter With Load-Independent Voltage-Gain Characteristics for Wide Voltage Range Applications. IEEE Transactions on Power Electronics, 2021, 36, 11509-11522.	7.9	9
58	Review and Comparison of Control Strategies in Active Power Decoupling. IEEE Transactions on Power Electronics, 2021, 36, 14436-14455.	7.9	33
59	A Cascade PI-SMC Method for Matrix Converter-Fed BDFIM Drives. IEEE Transactions on Transportation Electrification, 2021, 7, 2541-2550.	7.8	13
60	Light-Load Efficiency Enhancement of High-Frequency Dual-Active-Bridge Converter Under SPS Control. IEEE Transactions on Industrial Electronics, 2021, 68, 12941-12946.	7.9	37
61	A singleâ€stage ACâ€AC solidâ€state transformer with ZVS operation. IET Power Electronics, 2021, 14, 290-301.	2.1	5
62	Topology and Control Method of a Single-Cell Matrix-Type Solid-State Transformer. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 2302-2312.	5 . 4	13
63	A Natural Bidirectional Input-Series–Output-Parallel LLC-DCX Converter With Automatic Power Sharing and Power Limitation Capability for Li-Ion Battery Formation and Grading System. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 3618-3632.	5.4	35
64	Locally-distributed and globally-decentralized control for hybrid series-parallel microgrids. International Journal of Electrical Power and Energy Systems, 2020, 116, 105537.	5. 5	20
65	Improvement of Frequency Regulation in VSG-Based AC Microgrid Via Adaptive Virtual Inertia. IEEE Transactions on Power Electronics, 2020, 35, 1589-1602.	7.9	172
66	A General Impedance-Emulating Digital Control of Single-Phase Rectifier for High Power Factor. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 4037-4045.	5 . 4	9
67	A Decentralized Control for Cascaded Inverters in Grid-Connected Applications. IEEE Transactions on Industrial Electronics, 2020, 67, 8064-8071.	7.9	16
68	Convergence Analysis of Newton-Raphson Method in Feasible Power-Flow for DC Network. IEEE Transactions on Power Systems, 2020, 35, 4100-4103.	6.5	22
69	Reviews On Inertia Emulation Technology With Power Electronics. , 2020, , .		9
70	ZVS Analysis of Half Bridge LLC-DCX Converter Considering the Influence of Resonant Parameters and Loads. , 2020, , .		9
71	Singleâ€phase current source converter with high reliability and high power density. IET Power Electronics, 2020, 13, 1218-1226.	2.1	3
72	A general closed-loop power-decoupling control for reduced-switch converter-fed IM drives. Electrical Engineering, 2020, 102, 2423-2433.	2.0	4

#	Article	IF	CITATIONS
73	Transformerâ€less singleâ€phase unified power quality conditioner of no circulating current. IET Power Electronics, 2020, 13, 970-980.	2.1	11
74	Moving Integration Filter-Based Open-Switch Fault-Diagnosis Method for Three-Phase Induction Motor Drive Systems. IEEE Transactions on Transportation Electrification, 2020, 6, 1093-1103.	7.8	10
75	A Cascade PI-SMC Method for Brushless Doubly-Fed Induction Machine with Matrix Converter. , 2020, ,		2
76	Feasible Power-Flow Solution Analysis of DC Microgrids Under Droop Control. IEEE Transactions on Smart Grid, 2020, 11, 2771-2781.	9.0	23
77	Optimization Design and Control of Single-Stage Single-Phase PV Inverters for MPPT Improvement. IEEE Transactions on Power Electronics, 2020, 35, 13000-13016.	7.9	47
78	Communicationâ€free optimal economical dispatch scheme for cascadedâ€type microgrids with capacity constraints. IET Power Electronics, 2020, 13, 2866-2873.	2.1	5
79	Unified decentralised control for both gridâ€connected and islanded operation of cascadedâ€type microgrid. IET Renewable Power Generation, 2020, 14, 3138-3148.	3.1	4
80	Modulation Strategies Based on Mathematical Construction Method for Three-to-Five-Phase Matrix Converters. , 2020, , .		0
81	Single-phase Integrated Power Decoupling Inverter Based on Boost Converter. , 2020, , .		7
82	A Single-phase Voltage Source Inverter With Lower-Voltage-Rated Capacitor and Ripple Power Decoupling Function., 2020,,.		3
83	Hybrid UP-PWM Scheme for HERIC Inverter to Improve Power Quality and Efficiency. IEEE Transactions on Power Electronics, 2019, 34, 4292-4303.	7.9	38
84	A communication-free economical-sharing scheme for cascaded-type microgrids. International Journal of Electrical Power and Energy Systems, 2019, 104, 1-9.	5.5	16
85	Optimal criterion and global/sub-optimal control schemes of decentralized economical dispatch for AC microgrid. International Journal of Electrical Power and Energy Systems, 2019, 104, 38-42.	5.5	30
86	A New Modulation Strategy to Reduce Common-Mode Current of Indirect Matrix Converter. IEEE Transactions on Industrial Electronics, 2019, 66, 7447-7452.	7.9	21
87	Reducedâ€switch induction motor drive system with active power decoupling. IET Electric Power Applications, 2019, 13, 969-976.	1.8	4
88	Wind Power Short-Term Prediction Based on LSTM and Discrete Wavelet Transform. Applied Sciences (Switzerland), 2019, 9, 1108.	2.5	155
89	PWM Modulation and Control Strategy for LLC-DCX Converter to Achieve Bidirectional Power Flow in Facing With Resonant Parameters Variation. IEEE Access, 2019, 7, 54693-54704.	4.2	34
90	A Robust Second-Order Sliding Mode Control for Single-Phase Photovoltaic Grid-Connected Voltage Source Inverter. IEEE Access, 2019, 7, 53202-53212.	4.2	65

#	Article	IF	Citations
91	A Cost-Effective and Low-Complexity Predictive Control for Matrix Converters Under Unbalanced Grid Voltage Conditions. IEEE Access, 2019, 7, 43895-43905.	4.2	30
92	Single-Phase Inverter With Wide Input Voltage and Power Decoupling Capability. IEEE Access, 2019, 7, 16870-16879.	4.2	14
93	A Self-Synchronized Decentralized Control for Series-Connected H-Bridge Rectifiers. IEEE Transactions on Power Electronics, 2019, 34, 7136-7142.	7.9	20
94	Singleâ€magnetic equaliser without any sensors for seriesâ€connected battery strings. IET Power Electronics, 2019, 12, 2312-2320.	2.1	5
95	A Common Second Frequency Control of Island Cascaded-type Microgrid. , 2019, , .		2
96	A Predictive-Control-Based Over-Modulation Method for Third-Harmonic Injection Two-Stage Matrix Converter. , 2019, , .		0
97	A series-parallel PV-storage independent microgrid and its decentralized control. International Transactions on Electrical Energy Systems, 2019, 29, e2715.	1.9	2
98	A Generalized Design Framework for Neutral Point Voltage Balance of Three-Phase Vienna Rectifiers. IEEE Transactions on Power Electronics, 2019, 34, 10221-10232.	7.9	18
99	A Decentralized Control With Unique Equilibrium Point for Cascaded-Type Microgrid. IEEE Transactions on Sustainable Energy, 2019, 10, 324-326.	8.8	25
100	A fully decentralized control of grid-connected cascaded inverters. IEEE Transactions on Sustainable Energy, 2019, 10, 315-317.	8.8	68
101	Sensorless Control of Brushless Doubly Fed Induction Machine Using a Control Winding Current MRAS Observer. IEEE Transactions on Industrial Electronics, 2019, 66, 728-738.	7.9	44
102	Stability analysis of DC microgrids with constant power load under distributed control methods. Automatica, 2018, 90, 62-72.	5.0	78
103	Field Orientation Based on Current Amplitude and Phase Angle Control for Wireless Power Transfer. IEEE Transactions on Industrial Electronics, 2018, 65, 4758-4770.	7.9	66
104	An <italic>f-P/Q</italic> Droop Control in Cascaded-Type Microgrid. IEEE Transactions on Power Systems, 2018, 33, 1136-1138.	6.5	77
105	Hybrid predictive control strategy for a lowâ€cost converterâ€fed IM drive. IET Electric Power Applications, 2018, 12, 581-587.	1.8	9
106	Stability Analysis and Stabilization Methods of DC Microgrid With Multiple Parallel-Connected DC–DC Converters Loaded by CPLs. IEEE Transactions on Smart Grid, 2018, 9, 132-142.	9.0	181
107	Control Method for the Sheppard–Taylor PFC Rectifier to Reduce Capacitance Requirements. IEEE Transactions on Power Electronics, 2018, 33, 2714-2722.	7.9	7
108	Carrier-Based Modulation Strategies With Reduced Common-Mode Voltage for Five-Phase Voltage Source Inverters. IEEE Transactions on Power Electronics, 2018, 33, 2381-2394.	7.9	27

#	Article	IF	Citations
109	A Hybrid Control Scheme for Three-Phase Vienna Rectifiers. IEEE Transactions on Power Electronics, 2018, 33, 629-640.	7.9	67
110	A Predictive-Control-Based Over-Modulation Method for Conventional Matrix Converters. IEEE Transactions on Power Electronics, 2018, 33, 3631-3643.	7.9	29
111	A Single Phase AC/DC/AC Converter With Unified Ripple Power Decoupling. IEEE Transactions on Power Electronics, 2018, 33, 3204-3217.	7.9	26
112	A Robust Control Scheme Based on ISMC for the Brushless Doubly Fed Induction Machine. IEEE Transactions on Power Electronics, 2018, 33, 3129-3140.	7.9	32
113	A Finite Control Set Model Predictive Control Method for Matrix Converter With Zero Common-Mode Voltage. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6, 327-338.	5.4	56
114	A novel quasi-master-slave control frame for PV-storage independent microgrid. International Journal of Electrical Power and Energy Systems, 2018, 97, 262-274.	5.5	41
115	A Single-Phase PFC Rectifier With Wide Output Voltage and Low-Frequency Ripple Power Decoupling. IEEE Transactions on Power Electronics, 2018, 33, 5076-5086.	7.9	34
116	An Integrated Series-Parallel Microgrid Structure and its Unified Distributed Control., 2018,,.		5
117	Distributed Hierarchical Control of AC Microgrid Operating in Grid-Connected, Islanded and Their Transition Modes. IEEE Access, 2018, 6, 77388-77401.	4.2	110
118	Control method for the twoâ€stage matrix converter to enhance the linear voltage transfer ratio. IET Power Electronics, 2018, 11, 2295-2301.	2.1	10
119	Modified modulation scheme for threeâ€level diodeâ€clamped matrix converter under unbalanced input conditions. IET Power Electronics, 2018, 11, 1425-1433.	2.1	4
120	Existence and Stability of Equilibrium of DC Microgrid With Constant Power Loads. IEEE Transactions on Power Systems, 2018, 33, 6999-7010.	6.5	52
121	Topology and Control of a Split-Capacitor Four-Wire Current Source Inverter With Leakage Current Suppression Capability. IEEE Transactions on Power Electronics, 2018, 33, 10803-10814.	7.9	28
122	A General Decentralized Control Scheme for Medium-/High-Voltage Cascaded STATCOM. IEEE Transactions on Power Systems, 2018, 33, 7296-7300.	6.5	21
123	Optimal switching sequence model predictive control for threeâ€phase Vienna rectifiers. IET Electric Power Applications, 2018, 12, 1006-1013.	1.8	17
124	Stability analysis and concept extension of harmonic decoupling network for the three-phase grid synchronization systems. International Journal of Electrical Power and Energy Systems, 2017, 89, 1-10.	5.5	10
125	New Perspectives on Droop Control in AC Microgrid. IEEE Transactions on Industrial Electronics, 2017, 64, 5741-5745.	7.9	213
126	A Three-Level T-Type Indirect Matrix Converter Based on the Third-Harmonic Injection Technique. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5, 841-853.	5.4	29

#	Article	IF	Citations
127	Topology and Modulation Scheme of a Three-Level Third-Harmonic Injection Indirect Matrix Converter. IEEE Transactions on Industrial Electronics, 2017, 64, 7612-7622.	7.9	25
128	A Control Method for Bridgeless Cuk/Sepic PFC Rectifier to Achieve Power Decoupling. IEEE Transactions on Industrial Electronics, 2017, 64, 7272-7276.	7.9	53
129	Modulation Methods for Indirect Matrix Converter Extending the Input Reactive Power Range. IEEE Transactions on Power Electronics, 2017, 32, 4852-4863.	7.9	21
130	Distributed cooperative synchronization strategy for multi-bus microgrids. International Journal of Electrical Power and Energy Systems, 2017, 86, 18-28.	5.5	59
131	A decentralized SOC balancing method in cascaded H-bridge based storage modules. , 2017, , .		5
132	Distributed control scheme on cost optimisation under communication delays for DC microgrids. IET Generation, Transmission and Distribution, 2017, 11, 4193-4201.	2.5	35
133	A stabilization method of LC input filter in DC microgrids feeding constant power loads. , 2017, , .		3
134	Family of twoâ€port switching networks with ripple power decoupling and output voltage stepâ€up functions. IET Power Electronics, 2017, 10, 1175-1182.	2.1	11
135	A Repetitive Control Scheme Aimed at Compensating the 6k + 1 Harmonics for a Three-Phase Hybrid Active Filter. Energies, 2016, 9, 787.	3.1	16
136	Conventional P-ï‰/Q-V Droop Control in Highly Resistive Line of Low-Voltage Converter-Based AC Microgrid. Energies, 2016, 9, 943.	3.1	40
137	A carrier-based modulation strategy for multi-modular matrix converters with zero common-mode voltage. , 2016, , .		2
138	Novel active synchronization strategy for multi-bus microgrid with distributed cooperation control. , 2016, , .		0
139	Analysis and control of a reduced switch hybrid active power filter. IET Power Electronics, 2016, 9, 1416-1425.	2.1	25
140	Active power compensation method for singleâ€phase current source rectifier without extra active switches. IET Power Electronics, 2016, 9, 1719-1726.	2.1	15
141	Active thirdâ€harmonic injection indirect matrix converter with dual threeâ€phase outputs. IET Power Electronics, 2016, 9, 657-668.	2.1	17
142	Carrier-Based Modulation Strategies for Multimodular Matrix Converters. IEEE Transactions on Industrial Electronics, 2016, 63, 1350-1361.	7.9	32
143	Modulation Strategies Based on Mathematical Construction Method for Multimodular Matrix Converter. IEEE Transactions on Power Electronics, 2016, 31, 5423-5434.	7.9	25
144	Active Power Decoupling Method for Single-Phase Current-Source Rectifier With No Additional Active Switches. IEEE Transactions on Power Electronics, 2016, 31, 5644-5654.	7.9	42

#	Article	IF	CITATIONS
145	Two-Stage Matrix Converter Based on Third-Harmonic Injection Technique. IEEE Transactions on Power Electronics, 2016, 31, 533-547.	7.9	47
146	First-order Generalized Integrator Based Frequency Locked Loop and Synchronization for Three-Phase Grid-connected Converters under Adverse Grid Conditions. Journal of Power Electronics, 2016, 16, 1939-1949.	1.5	3
147	Optimized Hybrid Modulation Strategy for AC Bypass Transformerless Single-Phase Photovoltaic Inverters. Journal of Power Electronics, 2016, 16, 2129-2138.	1.5	5
148	Fault diagnosis for shunt hybrid active power filter with open-circuit fault based on voltage distortion. , $2015, \ldots$		1
149	Singleâ€phase current source converter with power decoupling capability using a seriesâ€connected active buffer. IET Power Electronics, 2015, 8, 700-707.	2.1	47
150	Investigation of three-level diode-clamped matrix converter under unbalanced input voltages. , 2015, , .		0
151	Indirect Matrix Converter-Based Topology and Modulation Schemes for Enhancing Input Reactive Power Capability. IEEE Transactions on Power Electronics, 2015, 30, 4669-4681.	7.9	56
152	Review of Active Power Decoupling Topologies in Single-Phase Systems. IEEE Transactions on Power Electronics, 2015, , 1-1.	7.9	336
153	Implementation of phase disposition modulation method for the threeâ€level diodeâ€clamped matrix converter. IET Power Electronics, 2015, 8, 2107-2114.	2.1	5
154	An Improved Droop Control Strategy for Reactive Power Sharing in Islanded Microgrid. IEEE Transactions on Power Electronics, 2015, 30, 3133-3141.	7.9	235
155	A novel single-phase current-source-type bidirectional converter for V2G application. , 2014, , .		3
156	Topology and Modulation for a New Multilevel Diode-Clamped Matrix Converter. IEEE Transactions on Power Electronics, 2014, 29, 6352-6360.	7.9	37
157	An Active Power-Decoupling Method for Single-Phase AC–DC Converters. IEEE Transactions on Industrial Informatics, 2014, 10, 461-468.	11.3	146
158	Coordinated control for unbalanced operation of stand-alone doubly fed induction generator. Wind Energy, 2014, 17, 317-336.	4.2	11
159	A unified modeling and control of a multi-functional current source-typed converter for V2G application. Electric Power Systems Research, 2014, 106, 12-20.	3.6	20
160	Modulation Strategy Based on Mathematical Construction for Matrix Converter Extending the Input Reactive Power Range. IEEE Transactions on Power Electronics, 2014, 29, 654-664.	7.9	36
161	A Single-Phase Current-Source Bidirectional Converter for V2G Applications. Journal of Power Electronics, 2014, 14, 458-467.	1.5	10
162	A High-Efficiency Bidirectional AC/DC Topology for V2G Applications. Journal of Power Electronics, 2014, 14, 899-907.	1.5	5

#	Article	IF	CITATION
163	AC/DC Matrix Converter With an Optimized Modulation Strategy for V2G Applications. IEEE Transactions on Power Electronics, 2013, 28, 5736-5745.	7.9	74
164	Optimal sensor scheduling for hybrid estimation. Journal of Central South University, 2013, 20, 2186-2194.	3.0	4
165	A General Constructive Approach to Matrix Converter Stabilization. IEEE Transactions on Power Electronics, 2013, 28, 418-431.	7.9	45
166	Modulation strategies based on mathematical construction method for matrix converter under unbalanced input voltages. IET Power Electronics, 2013, 6, 434-445.	2.1	39
167	Indirect Four-Leg Matrix Converter Based on Robust Adaptive Back-Stepping Control. IEEE Transactions on Industrial Electronics, 2011, 58, 4288-4298.	7.9	48
168	Randomized carrier modulation for four-leg matrix converter based on optimal Markov chain. , 2008, , .		4
169	Two New Modulation Strategies for Two-Stage Matrix Converter under Nonsinusoidal Input Voltages. , 2007, , .		3