Louise J Fleming

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5873981/publications.pdf

Version: 2024-02-01

87843 88593 5,364 107 38 70 citations h-index g-index papers 108 108 108 4906 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. European Respiratory Journal, 2015, 46, 1308-1321.	3.1	434
2	Diagnosis and definition of severe refractory asthma: an international consensus statement from the Innovative Medicine Initiative (IMI). Thorax, 2011, 66, 910-917.	2.7	294
3	GINA 2019: a fundamental change in asthma management. European Respiratory Journal, 2019, 53, 1901046.	3.1	277
4	Pediatric severe asthma is characterized by eosinophilia and remodeling without TH2 cytokines. Journal of Allergy and Clinical Immunology, 2012, 129, 974-982.e13.	1.5	271
5	U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. Journal of Allergy and Clinical Immunology, 2017, 139, 1797-1807.	1.5	236
6	Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. European Respiratory Journal, 2022, 59, 2102730.	3.1	218
7	Global Initiative for Asthma Strategy 2021: Executive Summary and Rationale for Key Changes. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 17-35.	2.5	196
8	The burden of severe asthma in childhood and adolescence: results from the paediatric U-BIOPRED cohorts. European Respiratory Journal, 2015, 46, 1322-1333.	3.1	179
9	Pediatric severe asthma with fungal sensitization is mediated by steroid-resistant IL-33. Journal of Allergy and Clinical Immunology, 2015, 136, 312-322.e7.	1.5	178
10	A Transcriptome-driven Analysis of Epithelial Brushings and Bronchial Biopsies to Define Asthma Phenotypes in U-BIOPRED. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 443-455.	2.5	165
11	Sputum inflammatory phenotypes are not stable in children with asthma. Thorax, 2012, 67, 675-681.	2.7	152
12	Measurement of Bronchial and Alveolar Nitric Oxide Production in Normal Children and Children with Asthma. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 260-267.	2.5	145
13	Increased Airway Smooth Muscle Mass in Children with Asthma, Cystic Fibrosis, and Non-Cystic Fibrosis Bronchiectasis. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 837-843.	2.5	145
14	Type 2 innate lymphoid cells in induced sputum from children with severe asthma. Journal of Allergy and Clinical Immunology, 2016, 137, 624-626.e6.	1.5	133
15	Use of sputum eosinophil counts to guide management in children with severe asthma. Thorax, 2012, 67, 193-198.	2.7	109
16	Pathway discovery using transcriptomic profiles in adult-onset severe asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 1280-1290.	1.5	105
17	"T2-high―in severe asthma related to blood eosinophil, exhaled nitric oxide andÂserum periostin. European Respiratory Journal, 2019, 53, 1800938.	3.1	104
18	Severe asthma in children. Respirology, 2017, 22, 886-897.	1.3	86

#	Article	IF	Citations
19	Electronic monitoring of adherence to inhaled corticosteroids: an essential tool in identifying severe asthma in children. European Respiratory Journal, 2017, 50, 1700910.	3.1	81
20	Advances in understanding and reducing the burden of severe asthma in children. Lancet Respiratory Medicine, the, 2020, 8, 1032-1044.	5.2	73
21	Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis. European Respiratory Journal, 2018, 51, 1702173.	3.1	67
22	Global Initiative for Asthma Strategy 2021: Executive Summary and Rationale for Key Changes. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, S1-S18.	2.0	66
23	What do adolescents with asthma really think about adherence to inhalers? Insights from a qualitative analysis of a UK online forum. BMJ Open, 2017, 7, e015245.	0.8	64
24	Assessment of corticosteroid response in pediatric patients with severe asthma by using a multidomain approach. Journal of Allergy and Clinical Immunology, 2016, 138, 413-420.e6.	1.5	63
25	Long-term effectiveness of a staged assessment for paediatric problematic severe asthma. European Respiratory Journal, 2012, 40, 264-267.	3.1	56
26	Diagnosis and management of asthma in children. BMJ, The, 2015, 350, h996-h996.	3.0	52
27	Pulmonary type-2 innate lymphoid cells in paediatric severe asthma: phenotype and response to steroids. European Respiratory Journal, 2019, 54, 1801809.	3.1	51
28	Managing the pediatric patient with refractory asthma: a multidisciplinary approach. Journal of Asthma and Allergy, 2017, Volume10, 123-130.	1.5	48
29	Recurrent Severe Preschool Wheeze: From Prespecified Diagnostic Labels to Underlying Endotypes. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 523-535.	2.5	48
30	Carbon in airway macrophages from children with asthma. Thorax, 2014, 69, 654-659.	2.7	47
31	Difficult to control asthma in children. Current Opinion in Allergy and Clinical Immunology, 2007, 7, 190-195.	1.1	46
32	Infection and inflammation in induced sputum from preschool children with chronic airways diseases. Pediatric Pulmonology, 2016, 51, 778-786.	1.0	46
33	Adherence to medication in children and adolescents with asthma: methods for monitoring and intervention. Expert Review of Clinical Immunology, 2018, 14, 1055-1063.	1.3	45
34	Is asthma overdiagnosed?. Archives of Disease in Childhood, 2016, 101, 688-689.	1.0	44
35	Transcriptomic gene signatures associated with persistent airflow limitation in patients with severe asthma. European Respiratory Journal, 2017, 50, 1602298.	3.1	44
36	Lower airway microbiota associates with inflammatory phenotype in severe preschool wheeze. Journal of Allergy and Clinical Immunology, 2019, 143, 1607-1610.e3.	1.5	43

#	Article	IF	CITATIONS
37	Longitudinal Relationship between Sputum Eosinophils and Exhaled Nitric Oxide in Children with Asthma. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 400-402.	2.5	42
38	A Gambian Infant with Fever and an Unexpected Blood Film. PLoS Medicine, 2006, 3, e355.	3.9	41
39	Treatable traits in the European Uâ€∢scp>BIOPRED adult asthma cohorts. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 406-411.	2.7	37
40	Feasibility of lung clearance index in a clinical setting in pre-school children. European Respiratory Journal, 2016, 48, 1074-1080.	3.1	35
41	Asthma exacerbation prediction: recent insights. Current Opinion in Allergy and Clinical Immunology, 2018, 18, 117-123.	1.1	35
42	Managing problematic severe asthma: beyond the guidelines. Archives of Disease in Childhood, 2018, 103, 392-397.	1.0	34
43	Connectivity patterns between multiple allergen specific IgE antibodies and their association with severe asthma. Journal of Allergy and Clinical Immunology, 2020, 146, 821-830.	1.5	33
44	Contribution of airway eosinophils in airway wall remodeling in asthma: Role of <i><scp>MMP</scp>â€10</i> and <i><scp>MET</scp></i> Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1102-1112.	2.7	32
45	Systematic Assessment of Difficult-to-Treat Asthma: Principles and Perspectives. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2222-2233.	2.0	31
46	Global Initiative for Asthma Strategy 2021. Respirology, 2022, 27, 14-35.	1.3	31
47	Global Initiative for Asthma Strategy 2021. Executive Summary and Rationale for Key Changes. Archivos De Bronconeumologia, 2022, 58, 35-51.	0.4	31
48	Advances in the aetiology, management, and prevention of acute asthma attacks in children. The Lancet Child and Adolescent Health, 2019, 3, 354-364.	2.7	30
49	Biologics for paediatric severe asthma: trick or TREAT?. Lancet Respiratory Medicine, the, 2019, 7, 294-296.	5.2	29
50	Severe asthma: looking beyond the amount of medication. Lancet Respiratory Medicine, the, 2017, 5, 844-846.	5.2	27
51	Novel electronic adherence monitoring devices in children with asthma: a mixed-methods study. BMJ Open Respiratory Research, 2020, 7, e000589.	1.2	27
52	Ethnic Variation in Response to IM Triamcinolone in Children With Severe Therapy-Resistant Asthma. Chest, 2016, 149, 98-105.	0.4	24
53	PHENOTYPES OF REFRACTORY/SEVERE ASTHMA. Paediatric Respiratory Reviews, 2011, 12, 177-181.	1.2	23
54	eNose breath prints as a surrogate biomarker for classifying patients with asthma by atopy. Journal of Allergy and Clinical Immunology, 2020, 146, 1045-1055.	1.5	22

#	Article	IF	CITATIONS
55	Mapping atopic dermatitis and anti–IL-22 response signatures to type 2–low severe neutrophilic asthma. Journal of Allergy and Clinical Immunology, 2022, 149, 89-101.	1.5	22
56	Paediatric asthma care in the UK: fragmented and fatally fallible. British Journal of General Practice, 2019, 69, 405-406.	0.7	21
57	Enhanced oxidative stress in smoking and ex-smoking severe asthma in the U-BIOPRED cohort. PLoS ONE, 2018, 13, e0203874.	1.1	18
58	Impaired airway epithelial cell woundâ€healing capacity is associated with airway remodelling following RSV infection in severe preschool wheeze. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3195-3207.	2.7	18
59	Lipid phenotyping of lung epithelial lining fluid in healthy human volunteers. Metabolomics, 2018, 14, 123.	1.4	17
60	Large-Scale Label-Free Quantitative Mapping of the Sputum Proteome. Journal of Proteome Research, 2018, 17, 2072-2091.	1.8	16
61	Severe Asthma—Perspectives From Adult and Pediatric Pulmonology. Frontiers in Pediatrics, 2019, 7, 389.	0.9	16
62	Safety of live attenuated influenza vaccine (LAIV) in children with moderate to severe asthma. Journal of Allergy and Clinical Immunology, 2020, 145, 1157-1164.e6.	1.5	16
63	The utility of a multidomain assessment of steroid response for predicting clinical response to omalizumab. Journal of Allergy and Clinical Immunology, 2016, 138, 292-294.	1.5	15
64	Role of a prolonged inpatient admission when evaluating children with problematic severe asthma. European Respiratory Journal, 2018, 51, 1701061.	3.1	15
65	Adolescent and caregivers' experiences of electronic adherence assessment in paediatric problematic severe asthma. Journal of Child Health Care, 2018, 22, 238-250.	0.7	13
66	Lung clearance index and steroid response in pediatric severe asthma. Pediatric Pulmonology, 2020, 55, 890-898.	1.0	13
67	Instability of sputum molecular phenotypes in U-BIOPRED severe asthma. European Respiratory Journal, 2021, 57, 2001836.	3.1	13
68	Multiple breath washouts in children can be shortened without compromising quality. European Respiratory Journal, 2015, 46, 1814-1816.	3.1	12
69	Specialised commissioning for severe asthma: oxymoron or opportunity?. Thorax, 2016, 71, 196-198.	2.7	12
70	Paediatric severe asthma biologics service: from hospital to home. Archives of Disease in Childhood, 2021, 106, 900-902.	1.0	12
71	Use of sputum eosinophil counts to guide management in children with severe asthma. Thorax, 2012, 67, 1015.1-1016.	2.7	11
72	Clinical and transcriptomic features of persistent exacerbationâ€prone severe asthma in Uâ€BIOPRED cohort. Clinical and Translational Medicine, 2022, 12, e816.	1.7	11

#	Article	IF	CITATIONS
73	Severe Paediatric Asthma Collaborative in Europe (SPACE): protocol for a European registry. Breathe, 2018, 14, 93-98.	0.6	10
74	Medication Adherence in Patients With Severe Asthma Prescribed Oral Corticosteroids in the U-BIOPRED Cohort. Chest, 2021, 160, 53-64.	0.4	10
75	How to manage a child with difficult asthma?. Expert Review of Respiratory Medicine, 2016, 10, 873-879.	1.0	9
76	Biologicals in childhood severe asthma: the European PERMEABLE survey on the $\langle i \rangle$ status quo $\langle i \rangle$. ERJ Open Research, 2021, 7, 00143-2021.	1.1	9
77	Electronic adherence monitoring identifies severe preschool wheezers who are steroid responsive. Pediatric Pulmonology, 2020, 55, 2254-2260.	1.0	7
78	Electronic reminders and rewards to improve adherence to inhaled asthma treatment in adolescents: a non-randomised feasibility study in tertiary care. BMJ Open, 2021, 11, e053268.	0.8	7
79	Blood eosinophils in managing preschool wheeze: Lessons learnt from a proofâ€ofâ€concept trial. Pediatric Allergy and Immunology, 2022, 33, .	1.1	7
80	First analysis of the Severe Paediatric Asthma Collaborative in Europe registry. ERJ Open Research, 2020, 6, 00566-2020.	1.1	5
81	Asthma reviews in children: what have we learned?. Thorax, 2020, 75, 98-99.	2.7	5
82	Issues affecting young people with asthma through the transition period to adult care. Paediatric Respiratory Reviews, 2022, 41, 30-39.	1.2	5
83	Expert meeting report: towards a joint European roadmap to address the unmet needs and priorities of paediatric asthma patients on biologic therapy. ERJ Open Research, 2021, 7, 00381-2021.	1.1	5
84	No the evidence: What have measurements of exhaled nitric oxide got to offer?. Journal of Pediatrics, 2006, 149, 156-158.	0.9	4
85	Predictive Modelling Strategies to Understand Heterogeneous Manifestations of Asthma in Early Life. , 2017, , .		4
86	2012 and never been KISSed: we need to improve the care of children with asthma. Primary Care Respiratory Journal: Journal of the General Practice Airways Group, 2012, 21, 242-244.	2.5	3
87	Digital interventions to improve adherence to maintenance medication in asthma. The Cochrane Library, 0, , .	1.5	3
88	Steroid-filled rant: or another fashion accessory?. Archives of Disease in Childhood, 2021, 106, 211-212.	1.0	3
89	A 3-month period of electronic monitoring can provide important information to the healthcare team to assess adherence and improve asthma control. ERJ Open Research, 2021, 7, 00726-2020.	1.1	3
90	COVID-19 and delivery of difficult asthma services. Archives of Disease in Childhood, 2022, 107, e15-e15.	1.0	3

#	Article	IF	CITATIONS
91	Monitoring asthma in children: what does BATMAN tell us?. Thorax, 2015, 70, 517-518.	2.7	2
92	Fraction of exhaled nitric oxide measurements and asthma control: Are the numbers starting to add up?. Journal of Allergy and Clinical Immunology, 2015, 135, 689-690.e1.	1.5	2
93	Asthma attacks: should we nail our colours to the mast (cell)?. European Respiratory Journal, 2016, 48, 1261-1264.	3.1	2
94	Piling Pelion upon Ossa: surely we already have enough non-evidence based ways of treating acute asthma?. Archives of Disease in Childhood, 2021, 106, 730-731.	1.0	2
95	Airway inflammation in severe asthmatics with acid gastro-oesophageal reflux. Thorax, 2022, 77, 398-399.	2.7	2
96	Avoiding common mistakes in the management of asthma: or, is the child a WADDLER?. Paediatrics and Child Health (United Kingdom), 2010, 20, 344-346.	0.2	1
97	Fluctuation-based clustering reveals phenotypes of patients with different asthma severity. ERJ Open Research, 2020, 6, 00007-2019.	1.1	1
98	Airway inflammation in severe asthmatics with gastro-oesophageal reflux., 2017,,.		1
99	Patterns of nonadherence in children with severe asthma. , 2016, , .		1
100	Evaluation and management of severe asthma in children. , 2019, , 246-264.		1
101	E-cigarette company tactics in sports advertising. Lancet Respiratory Medicine, the, 2022, 10, 634-636.	5.2	1
102	Advances in the management of asthma. Paediatrics and Child Health (United Kingdom), 2009, 19, 261-265.	0.2	0
103	Severe Asthma. , 2019, , 722-736.e5.		0
104	Discordant use of shortâ€acting β ₂ agonists in children and adults with severe, uncontrolled asthma from the Uâ€BIOPRED cohort. Pediatric Pulmonology, 2021, 56, 338-340.	1.0	0
105	Diagnosing, Monitoring and Treating Asthma. , 2022, , 270-287.		0
106	Management of Medication Side Effects and Complications. , 2020, , 183-211.		0
107	Reply to: GINA 2021: Asthma in Pre-School Children and SABA-Only Treatment. American Journal of Respiratory and Critical Care Medicine, 2022, , .	2.5	0