
Elessandra Da Rosa Zavareze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/587383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Basil Essential Oil: Methods of Extraction, Chemical Composition, Biological Activities, and Food Applications. Food and Bioprocess Technology, 2022, 15, 1-27.	2.6	24
2	Electrospun Starch Nanofibers as a Delivery Carrier for Carvacrol as Antiâ€Glioma Agent. Starch/Staerke, 2022, 74, 2100115.	1.1	7
3	Risk assessment of <i>in vitro</i> cytotoxicity, antioxidant and antimicrobial activities of <i>Mentha piperita</i> L. essential oil. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2022, 85, 230-242.	1.1	10
4	Characterization of ultrafine zein fibers incorporated with broccoli, kale, and cauliflower extracts by electrospinning. Journal of the Science of Food and Agriculture, 2022, 102, 4210-4217.	1.7	1
5	Multivariate optimization results in an edible extract from <i>llex paraguariensis</i> unexplored residues with a high amount of phenolic compounds. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2022, 57, 23-38.	0.7	4
6	Starches Properties from Soft, Mediumâ€Hard, and Hard Brazilian Wheat upon Annealing. Starch/Staerke, 2022, 74, .	1.1	0
7	Carioca bean starch upon synergic modification: characteristics and films properties. Journal of the Science of Food and Agriculture, 2021, 101, 253-261.	1.7	7
8	Encapsulation of broccoli extract by electrospraying: Influence of in vitro simulated digestion on phenolic and glucosinolate contents, and on antioxidant and antihyperglycemic activities. Food Chemistry, 2021, 339, 128075.	4.2	24
9	Aerogels based on corn starch as carriers for pinhão coat extract (Araucaria angustifolia) rich in phenolic compounds for active packaging. International Journal of Biological Macromolecules, 2021, 169, 362-370.	3.6	28
10	Chemical composition and in vitro antioxidant and antihyperglycemic activities of clove, thyme, oregano, and sweet orange essential oils. LWT - Food Science and Technology, 2021, 138, 110632.	2.5	35
11	Suitability of starch/carvacrol nanofibers as biopreservatives for minimizing the fungal spoilage of bread. Carbohydrate Polymers, 2021, 252, 117166.	5.1	28
12	Production and Optimization of Ultrafine Fiber from Yam Starch by Electrospinning Method Using Multivariate Analysis. Starch/Staerke, 2021, 73, 2000174.	1.1	2
13	Starch nanofibers as vehicles for folic acid supplementation: thermal treatment, <scp>UVA</scp> irradiation and <i>in vitro</i> simulation of digestion. Journal of the Science of Food and Agriculture, 2021, 101, 1935-1943.	1.7	12
14	Building-up host–guest helicate motifs and chains: a magneto-structural study of new field-induced cobalt-based single-ion magnets. Dalton Transactions, 2021, 50, 10707-10728.	1.6	6
15	Impact of encapsulated orange essential oil with βâ€cyclodextrin on technological, digestibility, sensory properties of wheat cakes as well as <i>Aspergillus flavus</i> spoilage. Journal of the Science of Food and Agriculture, 2021, 101, 5599-5607.	1.7	17
16	Extrudate glutenâ€free breakfast cereals from rice and corn flours with different amylose content: technological and sensory properties. International Journal of Food Science and Technology, 2021, 56, 4182-4190.	1.3	8
17	Effect of Physical Pretreatments on the Hydrolysis Kinetic, Structural, and Thermal Properties of Pinhão Starch Nanocrystals. Starch/Staerke, 2021, 73, 2000008.	1.1	5
18	Postharvest quality and antioxidant activity extension of strawberry fruit using allyl isothiocyanate encapsulated by electrospun zein ultrafine fibers. LWT - Food Science and Technology, 2021, 143, 111087.	2.5	18

#	Article	IF	CITATIONS
19	<i>Pinhão</i> coat extract encapsulated in starch ultrafine fibers: Thermal, antioxidant, and antimicrobial properties and <i>in vitro</i> biological digestion. Journal of Food Science, 2021, 86, 2886-2897.	1.5	8
20	Polysaccharides as wall material for the encapsulation of essential oils by electrospun technique. Carbohydrate Polymers, 2021, 265, 118068.	5.1	35
21	Production of gluten free bread with flour and chia seeds (Salvia hispânica L). Food Bioscience, 2021, 43, 101294.	2.0	10
22	Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohydrate Polymers, 2021, 274, 118665.	5.1	100
23	Thermal stability, hydrophobicity and antioxidant potential of ultrafine poly (lactic acid)/rice husk lignin fibers. Brazilian Journal of Chemical Engineering, 2021, 38, 133-144.	0.7	13
24	A―and Bâ€ŧype starch granules from wheat exhibiting weak, medium, and strong gluten: An investigation of physicochemical, morphological, and in vitro digestion properties. Cereal Chemistry, 2021, 98, 547-556.	1.1	7
25	Different reaction times for phosphorylation of sorghum flour (Sorghum bicolor): Physicochemical evaluation and application in the formulation of gluten-free cakes. Food Bioscience, 2021, , 101441.	2.0	2
26	Fabrication of electrospun poly(lactic acid) nanoporous membrane loaded with niobium pentoxide nanoparticles as a potential scaffold for biomaterial applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1559-1567.	1.6	10
27	Germinated Wheat Starch as a Substrate to Produce Cyclodextrins: Application in Inclusion Complex to Improve the Thermal Stability of Orange Essential Oil. Starch/Staerke, 2020, 72, 1900083.	1.1	5
28	Fruit Wastes as Promising Sources of Starch: Extraction, Properties, and Applications. Starch/Staerke, 2020, 72, 1900200.	1.1	48
29	Biocomposite Films Based on Phosphorylated Wheat Starch and Cellulose Nanocrystals from Rice, Oat, and Eucalyptus Husks. Starch/Staerke, 2020, 72, 1900051.	1.1	21
30	Electrospun β-carotene–loaded SPI:PVA fiber mats produced by emulsion-electrospinning as bioactive coatings for food packaging. Food Packaging and Shelf Life, 2020, 23, 100426.	3.3	55
31	Mononuclear lanthanide(<scp>iii</scp>)-oxamate complexes as new photoluminescent field-induced single-molecule magnets: solid-state photophysical and magnetic properties. Dalton Transactions, 2020, 49, 16106-16124.	1.6	12
32	Recovery of Bioactive Compounds from Jaboticaba Peels and Application into Zein Ultrafine Fibers Produced by Electrospinning. Polymers, 2020, 12, 2916.	2.0	17
33	Electrospun potato starch nanofibers for thyme essential oil encapsulation: antioxidant activity and thermal resistance. Journal of the Science of Food and Agriculture, 2020, 100, 4263-4271.	1.7	50
34	Methods for the Extraction of Roots, Tubers, Pulses, Pseudocereals, and Other Unconventional Starches Sources: A Review. Starch/Staerke, 2020, 72, 1900234.	1.1	41
35	Antimicrobial potential of spray drying encapsulated thyme (Thymus vulgaris) essential oil on the conservation of hamburger-like meat products. International Journal of Food Microbiology, 2020, 330, 108696.	2.1	72
36	Electrospun Starch Fibers Loaded with Pinhão (Araucaria angustifolia) Coat Extract Rich in Phenolic Compounds. Food Biophysics, 2020, 15, 355-367.	1.4	24

#	Article	IF	CITATIONS
37	Electrospun protein fibers loaded with yerba mate extract for bioactive release in food packaging. Journal of the Science of Food and Agriculture, 2020, 100, 3341-3350.	1.7	32
38	Dual modification of potato starch: Effects of heat-moisture and high pressure treatments on starch structure and functionalities. Food Chemistry, 2020, 318, 126475.	4.2	72
39	Cake of brown, black and red rice: Influence of transglutaminase on technological properties, in vitro starch digestibility and phenolic compounds. Food Chemistry, 2020, 318, 126480.	4.2	21
40	Crosslinked electrospun polyvinyl alcoholâ€based containing immobilized αâ€amilase for food application. Journal of Food Processing and Preservation, 2020, 44, e14427.	0.9	2
41	Free and encapsulated orange essential oil into a βâ€cyclodextrin inclusion complex and zein to delay fungal spoilage in cakes. Journal of Food Processing and Preservation, 2020, 44, e14411.	0.9	35
42	Glucosinolates and phenolic compounds rich broccoli extract: Encapsulation by electrospraying and antitumor activity against glial tumor cells. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111020.	2.5	29
43	Aerogels from Native and Anionic Corn Starches Loaded with Pinhão (Araucaria angustifolia) Coat Extract: Antiâ€Tumor Activity in C6 Rat Glioma Cells and In Vitro Digestibility. Starch/Staerke, 2020, 72, 1900280.	1.1	6
44	Characterization of aerogels as bioactive delivery vehicles produced through the valorization of yerba-mate (Illex paraguariensis). Food Hydrocolloids, 2020, 107, 105931.	5.6	29
45	Photocatalytic zein-TiO2 nanofibers as ethylene absorbers for storage of cherry tomatoes. Food Packaging and Shelf Life, 2020, 24, 100508.	3.3	43
46	Physically cross-linked aerogels based on germinated and non-germinated wheat starch and PEO for application as water absorbers for food packaging. International Journal of Biological Macromolecules, 2020, 155, 6-13.	3.6	29
47	Starches in Foods and Beverages. , 2020, , 897-913.		1
48	Thermal and irradiation resistance of folic acid encapsulated in zein ultrafine fibers or nanocapsules produced by electrospinning and electrospraying. Food Research International, 2019, 124, 137-146.	2.9	51
49	Characteristics of starch from different bean genotypes and its effect on biodegradable films. Journal of the Science of Food and Agriculture, 2019, 99, 1207-1214.	1.7	17
50	Wheat grain storage at moisture milling: Control of protein quality and bakery performance. Journal of Food Processing and Preservation, 2019, 43, e13974.	0.9	5
51	Methods for Extracting Cereal Starches from Different Sources: A Review. Starch/Staerke, 2019, 71, 1900128.	1.1	40
52	Development of antimicrobial and antioxidant electrospun soluble potato starch nanofibers loaded with carvacrol. International Journal of Biological Macromolecules, 2019, 139, 1182-1190.	3.6	100
53	Antimicrobial activity of 3-(p-chlorophenyl)thio citronellal against planktonic and biofilm Staphylococcus aureus cells and its application in biodegradable films. Food Packaging and Shelf Life, 2019, 22, 100375.	3.3	2
54	Impact of Wheat (<i>Triticum aestivum</i> L.) Germination Process on Starch Properties for Application in Films. Starch/Staerke, 2019, 71, 1800262.	1.1	9

#	Article	IF	CITATIONS
55	Electrospun Ultrafine Fibers from Black Bean Protein Concentrates and Polyvinyl Alcohol. Food Biophysics, 2019, 14, 446-455.	1.4	15
56	Avocado Oil Incorporated in Ultrafine Zein Fibers by Electrospinning. Food Biophysics, 2019, 14, 383-392.	1.4	14
57	Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. Carbohydrate Polymers, 2019, 222, 114981.	5.1	165
58	Nano-scale polysaccharide materials in food and agricultural applications. Advances in Food and Nutrition Research, 2019, 88, 85-128.	1.5	19
59	Electrosprayed octenyl succinic anhydride starch capsules for rosemary essential oil encapsulation. International Journal of Biological Macromolecules, 2019, 132, 300-307.	3.6	40
60	Antioxidant ultrafine fibers developed with microalga compounds using a free surface electrospinning. Food Hydrocolloids, 2019, 93, 131-136.	5.6	53
61	Application of soy protein isolate in the fining of red wine. Ciencia E Tecnica Vitivinicola, 2019, 34, 48-60.	0.3	1
62	Physicochemical, pasting, crystallinity, and morphological properties of starches isolated from maize kernels exhibiting different types of defects. Food Chemistry, 2019, 274, 330-336.	4.2	27
63	Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging. International Journal of Biological Macromolecules, 2019, 124, 175-184.	3.6	97
64	Immobilization of α-amylase in ultrafine polyvinyl alcohol (PVA) fibers via electrospinning and their stability on different substrates. International Journal of Biological Macromolecules, 2019, 126, 834-841.	3.6	48
65	Development of food packaging bioactive aerogels through the valorization of Gelidium sesquipedale seaweed. Food Hydrocolloids, 2019, 89, 337-350.	5.6	58
66	Electrospinning of native and anionic corn starch fibers with different amylose contents. Food Research International, 2019, 116, 1318-1326.	2.9	42
67	Characteristics of Modified Carioca Bean Starch upon Single and Dual Annealing, Heatâ€Moistureâ€Treatment, and Sonication. Starch/Staerke, 2019, 71, 1800173.	1.1	9
68	Starches in Foods and Beverages. , 2019, , 1-17.		2
69	Starch hydrogels: The influence of the amylose content and gelatinization method. International Journal of Biological Macromolecules, 2018, 113, 443-449.	3.6	120
70	Microalgae protein heating in acid/basic solution for nanofibers production by free surface electrospinning. Journal of Food Engineering, 2018, 230, 49-54.	2.7	19
71	Changes in enzymatic activity, technological quality and gamma-aminobutyric acid (GABA) content of wheat flour as affected by germination. LWT - Food Science and Technology, 2018, 90, 483-490.	2.5	64
72	Heatâ€noisture treatment of oat grains and its effects on lipase activity and starch properties. Starch/Staerke, 2018, 70, 1700010.	1.1	20

#	Article	IF	CITATIONS
73	The properties of potato and cassava starch films combined with cellulose fibers and/or nanoclay. Starch/Staerke, 2018, 70, 1700115.	1.1	18
74	High pressure processing and retrogradation of potato starch: Influence on functional properties and gastro-small intestinal digestion inÂvitro. Food Hydrocolloids, 2018, 75, 131-137.	5.6	60
75	Ultrafine fibers of zein and anthocyanins as natural pH indicator. Journal of the Science of Food and Agriculture, 2018, 98, 2735-2741.	1.7	88
76	Phosphorylated and Crossâ€Linked Wheat Starches in the Presence of Polyethylene Oxide and Their Application in Biocomposite Films. Starch/Staerke, 2018, 70, 1700192.	1.1	16
77	Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. International Journal of Biological Macromolecules, 2018, 118, 107-115.	3.6	110
78	Development of cookies from agroindustrial by-products. Revista Brasileira De Fruticultura, 2018, 40, .	0.2	3
79	Immobilization of xylanase and xylanase–β-cyclodextrin complex in polyvinyl alcohol via electrospinning improves enzyme activity at a wide pH and temperature range. International Journal of Biological Macromolecules, 2018, 118, 1676-1684.	3.6	41
80	Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Food Chemistry, 2017, 214, 53-60.	4.2	105
81	Morphological, mechanical, barrier and properties of films based on acetylated starch and cellulose from barley. Journal of the Science of Food and Agriculture, 2017, 97, 411-419.	1.7	26
82	Microstructural characteristics and gastro-small intestinal digestion in vitro of potato starch: Effects of refrigerated storage and reheating in microwave. Food Chemistry, 2017, 226, 171-178.	4.2	51
83	Functional, physiological, and rheological properties of oat β-glucan oxidized with hydrogen peroxide under soft conditions. Journal of Food Processing and Preservation, 2017, 41, e13169.	0.9	2
84	Structural, Thermal, Physical, Mechanical, and Barrier Properties of Chitosan Films with the Addition of Xanthan Gum. Journal of Food Science, 2017, 82, 698-705.	1.5	53
85	pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT - Food Science and Technology, 2017, 80, 492-500.	2.5	236
86	Biodegradable films based on chitosan, xanthan gum, and fish protein hydrolysate. Journal of Applied Polymer Science, 2017, 134, .	1.3	29
87	Physicochemical properties of nanocomposite films made from sorghumâ€oxidized starch and nanoclay. Starch/Staerke, 2017, 69, 1700079.	1.1	6
88	Production, Characterization, and Stability of Orange or Eucalyptus Essential Oil/β yclodextrin Inclusion Complex. Journal of Food Science, 2017, 82, 2598-2605.	1.5	58
89	Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex. International Journal of Biological Macromolecules, 2017, 104, 874-882.	3.6	121
90	Properties of Popcorn Starch Expanded in a Microwave, with and without the Presence of Vegetable Oil. Journal of Food Processing and Preservation, 2017, 41, e13142.	0.9	11

#	Article	IF	CITATIONS
91	Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties. Food Chemistry, 2017, 221, 1614-1620.	4.2	116
92	Molecular structure, functionality and applications of oxidized starches: A review. Food Chemistry, 2017, 221, 1546-1559.	4.2	194
93	Changes in properties of starch isolated from whole rice grains with brown, black, and red pericarp after storage at different temperatures. Food Chemistry, 2017, 216, 194-200.	4.2	57
94	Characteristics of starch isolated from black beans (<i>Phaseolus vulgaris</i> L.) stored for 12 months at different moisture contents and temperatures. Starch/Staerke, 2017, 69, 1600229.	1.1	9
95	Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chemistry, 2017, 221, 153-160.	4.2	157
96	Black bean (Phaseolus vulgaris L.) protein hydrolysates: Physicochemical and functional properties. Food Chemistry, 2017, 214, 460-467.	4.2	139
97	Study of heat–moisture treatment of potato starch granules by chemical surface gelatinization. Journal of the Science of Food and Agriculture, 2017, 97, 3114-3123.	1.7	23
98	Antioxidant activity of black bean (Phaseolus vulgaris L.) protein hydrolysates. Food Science and Technology, 2016, 36, 23-27.	0.8	17
99	Films based on protein isolated from croaker (<i>Micropogonias furnieri</i>) and palm oil. Journal of the Science of Food and Agriculture, 2016, 96, 2478-2485.	1.7	12
100	Mechanical Analysis of Biodegradable Films from Native and Chemically Modified Potato Starches. Materials Science Forum, 2016, 869, 830-834.	0.3	1
101	Extrusion of Rice, Bean and Corn Starches: Extrudate Structure and Molecular Changes in Amylose and Amylopectin. Journal of Food Science, 2016, 81, E2932-E2938.	1.5	20
102	Effects of Protein Concentration, Plasticiser, and pH on the Properties of Protein Films from Whitemouth Croaker (Micropogonias furnieri) Residues. Journal of Aquatic Food Product Technology, 2016, 25, 507-517.	0.6	2
103	Acetylation of barnyardgrass starch with acetic anhydride under iodine catalysis. Food Chemistry, 2015, 178, 236-242.	4.2	21
104	Functional, thermal and rheological properties of oat β-glucan modified by acetylation. Food Chemistry, 2015, 178, 243-250.	4.2	32
105	Structural and technological characteristics of starch isolated from sorghum as a function of drying temperature and storage time. Carbohydrate Polymers, 2015, 133, 46-51.	5.1	22
106	Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, 2015, 133, 644-653.	5.1	80
107	Effects of single and dual physical modifications on pinhão starch. Food Chemistry, 2015, 187, 98-105.	4.2	80
108	Acetylation of rice starch in an aqueous medium for use in food. LWT - Food Science and Technology, 2015, 62, 1076-1082.	2.5	81

#	Article	IF	CITATIONS
109	Impact of heat-moisture treatment on rice starch, applied directly in grain paddy rice or in isolated starch. LWT - Food Science and Technology, 2015, 60, 708-713.	2.5	77
110	Molecular structure and granule morphology of native and heatâ€moistureâ€treated pinhão starch. International Journal of Food Science and Technology, 2015, 50, 282-289.	1.3	27
111	Oxidation of potato starch with different sodium hypochlorite concentrations and its effect on biodegradable films. LWT - Food Science and Technology, 2015, 60, 714-720.	2.5	109
112	Structure, morphology and functionality of acetylated and oxidised barley starches. Food Chemistry, 2015, 168, 247-256.	4.2	156
113	The effects of heat–moisture treatment of rice grains before parboiling on viscosity profile and physicochemical properties. International Journal of Food Science and Technology, 2014, 49, 1939-1945.	1.3	24
114	Isoflavone Aglycone Content and the Thermal, Functional, and Structural Properties of Soy Protein Isolates Prepared from Hydrothermally Treated Soybeans. Journal of Food Science, 2014, 79, E1351-8.	1.5	9
115	Starch and flour from defective rice kernels and their physicochemical properties. Starch/Staerke, 2014, 66, 729-737.	1.1	9
116	Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. LWT - Food Science and Technology, 2014, 59, 841-848.	2.5	93
117	Structural, morphological, and physicochemical properties of acetylated high-, medium-, and low-amylose rice starches. Carbohydrate Polymers, 2014, 103, 405-413.	5.1	170
118	Ozone oxidation of cassava starch in aqueous solution at different pH. Food Chemistry, 2014, 155, 167-173.	4.2	106
119	Mechanical, Barrier and Morphological Properties of Biodegradable Films Based on Muscle and Waste Proteins from the Whitemouth Croaker (<i>M icropogonias furnieri</i>). Journal of Food Processing and Preservation, 2014, 38, 1973-1981.	0.9	38
120	Characteristics of starch isolated from maize as a function of grain storage temperature. Carbohydrate Polymers, 2014, 102, 88-94.	5.1	46
121	Effect of alkali and oxidative treatments on the physicochemical, pasting, thermal and morphological properties of corn starch. Journal of the Science of Food and Agriculture, 2013, 93, 2331-2337.	1.7	36
122	Effect of single and dual heat–moisture treatments on properties of rice, cassava, and pinhao starches. Carbohydrate Polymers, 2013, 98, 1578-1584.	5.1	147
123	Protein enrichment and its effects on gluten-free bread characteristics. LWT - Food Science and Technology, 2013, 53, 346-354.	2.5	62
124	Filmes biodegradÃiveis à base de proteÃnas miofibrilares de pescado. Brazilian Journal of Food Technology, 2012, 15, 53-57.	0.8	18
125	Revisão: caracterÃsticas de nanopartÃculas e potenciais aplicações em alimentos. Brazilian Journal of Food Technology, 2012, 15, 99-109.	0.8	51
126	Resistant starch and thermal, morphological and textural properties of heatâ€moisture treated rice starches with highâ€, medium―and lowâ€amylose content. Starch/Staerke, 2012, 64, 45-54.	1.1	31

#	Article	IF	CITATIONS
127	Physicochemical, crystallinity, pasting and thermal properties of heatâ€moistureâ€treated pinhão starch. Starch/Staerke, 2012, 64, 855-863.	1.1	64
128	Physicochemical, crystallinity, pasting and morphological properties of bean starch oxidised by different concentrations of sodium hypochlorite. Food Chemistry, 2012, 131, 1255-1262.	4.2	125
129	Development of oxidised and heat–moisture treated potato starch film. Food Chemistry, 2012, 132, 344-350.	4.2	167
130	CHAPTER 4. Relation between Structural Anisotropy in Natural Fibres and Mechanical Properties in Composites. RSC Green Chemistry, 2012, , 63-85.	0.0	1
131	Pasting, morphological, thermal and crystallinity properties of starch isolated from beans stored under different atmospheric conditions. Carbohydrate Polymers, 2011, 86, 1403-1409.	5.1	55
132	Effects of oxidative treatment on the physicochemical, rheological and functional properties of oat β-glucan. Food Chemistry, 2011, 128, 982-987.	4.2	45
133	Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polymers, 2011, 83, 317-328.	5.1	635
134	Pasting, expansion and textural properties of fermented cassava starch oxidised with sodium hypochlorite. Carbohydrate Polymers, 2011, 84, 268-275.	5.1	49
135	Oxidation of fermented cassava starch using hydrogen peroxide. Carbohydrate Polymers, 2011, 86, 185-191.	5.1	56
136	Effects of annealing on the physicochemical properties and enzymatic susceptibility of rice starches with different amylose contents. Food Chemistry, 2010, 123, 711-719.	4.2	77
137	Effect of heat-moisture treatment on rice starch of varying amylose content. Food Chemistry, 2010, 121, 358-365.	4.2	203
138	Expansion of rice flour treated with lactic acid and sodium bisulphite. LWT - Food Science and Technology, 2010, 43, 326-330.	2.5	3
139	The effects of acid and oxidative modification on the expansion properties of rice flours with varying levels of amylose. LWT - Food Science and Technology, 2010, 43, 1213-1219.	2.5	15
140	Teor de amido resistente e perfil de textura de amidos de arroz com diferentes nÃveis de amilose modificados hidrotermicamente. Brazilian Journal of Food Technology, 2010, 13, 96-101.	0.8	2
141	Funcionalidade de hidrolisados proteicos de cabrinha (Prionotus punctatus) obtidos a partir de diferentes proteases microbianas. Quimica Nova, 2009, 32, 1739-1743.	0.3	11
142	Deoxynivalenol content, phenolic compounds, and antioxidant activity of wheat flour after debranning process. Pesquisa Agropecuaria Brasileira, 0, 55, .	0.9	1
143	Application of Films Based on Chitosan and Xanthan Gum in Refrigerated Fish Conservation. Brazilian Archives of Biology and Technology, 0, 63, .	0.5	2

Multivariate Analysis as Tool for Optimization of Anthocyanins Extraction from Jambolan (Syzygium) Tj ETQq0 0 0 rg BT /Overlock 10 Tf 2

#	Article	IF	CITATIONS
145	Antimicrobial properties of PLA membranes loaded with pink pepper (Schinus terebinthifolius Raddi) essential oil applied in simulated cream cheese packaging. Food Biophysics, 0, , .	1.4	3