Angel P Del Pobil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/587372/publications.pdf Version: 2024-02-01

		331670	377865
141	1,649	21	34
papers	citations	h-index	g-index
152	152	152	1476
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Role of Internet of Things (IoT) in Smart Cities: Technology Roadmap-oriented Approaches. Sustainability, 2018, 10, 1388.	3.2	121
2	When humanoid robots become human-like interaction partners: Corepresentation of robotic actions Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 1073-1077.	0.9	112
3	Optimal renewable power generation systems for Busan metropolitan city in South Korea. Renewable Energy, 2016, 88, 517-525.	8.9	67
4	Vision-based three-finger grasp synthesis constrained by hand geometry. Robotics and Autonomous Systems, 2006, 54, 496-512.	5.1	64
5	Determinants of customer satisfaction with airline services: An analysis of customer feedback big data. Journal of Retailing and Consumer Services, 2019, 51, 186-190.	9.4	55
6	Implicit Sensorimotor Mapping of the Peripersonal Space by Gazing and Reaching. IEEE Transactions on Autonomous Mental Development, 2011, 3, 43-53.	1.6	49
7	Users' attitudes toward service robots in South Korea. Industrial Robot, 2013, 40, 77-87.	2.1	46
8	Toward Replicable and Measurable Robotics Research [From the Guest Editors]. IEEE Robotics and Automation Magazine, 2015, 22, 32-35.	2.0	45
9	Deep learning model based on expectation-confirmation theory to predict customer satisfaction in hospitality service. Information Technology and Tourism, 2022, 24, 109-126.	5.8	43
10	Personal Robot Assistants for Elderly Care: An Overview. Intelligent Systems Reference Library, 2018, , 77-91.	1.2	42
11	Determinants of Behavioral Intention to Use South Korean Airline Services: Effects of Service Quality and Corporate Social Responsibility. Sustainability, 2015, 7, 12106-12121.	3.2	41
12	Task-Oriented Grasping using Hand Preshapes and Task Frames. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	40
13	Modeling the user acceptance of long-term evolution (LTE) services. Annales Des Telecommunications/Annals of Telecommunications, 2013, 68, 307-315.	2.5	39
14	Optimized Renewable and Sustainable Electricity Generation Systems for Ulleungdo Island in South Korea. Sustainability, 2014, 6, 7883-7893.	3.2	37
15	Object Detection and Recognition for Assistive Robots: Experimentation and Implementation. IEEE Robotics and Automation Magazine, 2017, 24, 123-138.	2.0	37
16	Technology Acceptance Model for the Use of Tablet PCs. Wireless Personal Communications, 2013, 73, 1561-1572.	2.7	34
17	The Effects of a Robot Instructor's Positive vs. Negative Feedbacks on Attraction and Acceptance towards the Robot in Classroom. Lecture Notes in Computer Science, 2011, , 135-141.	1.3	34

18 Vision-tactile-force integration and robot physical interaction. , 2009, , .

#	Article	IF	CITATIONS
19	The Law of Attraction in Human-Robot Interaction. International Journal of Advanced Robotic Systems, 2012, 9, 35.	2.1	32
20	Reliable non-prehensile door opening through the combination ofÂvision, tactile and force feedback. Autonomous Robots, 2010, 29, 201-218.	4.8	26
21	A Hierarchical System for a Distributed Representation of the Peripersonal Space of a Humanoid Robot. IEEE Transactions on Autonomous Mental Development, 2014, 6, 259-273.	1.6	24
22	Antecedents of Behavioral Intention to Use Mobile Telecommunication Services: Effects of Corporate Social Responsibility and Technology Acceptance. Sustainability, 2015, 7, 11345-11359.	3.2	24
23	Compliant interaction in household environments by the Armar-III humanoid robot. , 2008, , .		22
24	Robotic execution of everyday tasks by means of external vision/force control. Intelligent Service Robotics, 2008, 1, 253-266.	2.6	21
25	The UJI librarian robot. Intelligent Service Robotics, 2008, 1, 321-335.	2.6	21
26	Perception-based learning for motion in contact in task planning. Journal of Intelligent and Robotic Systems: Theory and Applications, 1996, 17, 283-308.	3.4	18
27	VIsion force control in task-oriented grasping and manipulation. , 2007, , .		15
28	THE NEUROSCIENCE OF VISION-BASED GRASPING: A FUNCTIONAL REVIEW FOR COMPUTATIONAL MODELING AND BIO-INSPIRED ROBOTICS. Journal of Integrative Neuroscience, 2009, 08, 223-254.	1.7	13
29	Deep Learning based Object Recognition for Robot picking task. , 2018, , .		13
30	Can AI be a content generator? Effects of content generators and information delivery methods on the psychology of content consumers. Telematics and Informatics, 2020, 55, 101452.	5.8	13
31	A framework for compliant physical interaction. Autonomous Robots, 2010, 28, 89-111.	4.8	12
32	The Dorso-medial visual stream: From neural activation to sensorimotor interaction. Neurocomputing, 2011, 74, 1203-1212.	5.9	12
33	Safety for a robot arm moving amidst humans by using panoramic vision. , 2008, , .		11
34	Extending the technology acceptance model in remote pointing technology: identifying the role of perceived mobility and control. Sensor Review, 2013, 33, 40-47.	1.8	11
35	Biologically-inspired 3D grasp synthesis based onÂvisual exploration. Autonomous Robots, 2008, 25, 59-70.	4.8	10
36	Distance and orientation estimation of graspable objects in natural and artificial systems. Neurocomputing, 2009, 72, 879-886.	5.9	10

#	Article	IF	CITATIONS
37	Proposal of a REST-Based Architecture Server to Control a Robot. , 2012, , .		10
38	Adaptive saccade controller inspired by the primates' cerebellum. , 2015, , .		10
39	The Robot Programming Network. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 81, 77-95.	3.4	10
40	Determinants of customer brand loyalty in the retail industry: A comparison between national and private brands in South Korea. Journal of Retailing and Consumer Services, 2021, 63, 102684.	9.4	10
41	Implicit mapping of the peripersonal space of a humanoid robot. , 2011, , .		9
42	Pose Estimation Through Cue Integration: A Neuroscience-Inspired Approach. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42, 530-538.	5.0	9
43	HOW DEEPLY DO WE INCLUDE ROBOTIC AGENTS IN THE SELF?. International Journal of Humanoid Robotics, 2013, 10, 1350015.	1.1	9
44	Learning the visual–oculomotor transformation: Effects on saccade control and space representation. Robotics and Autonomous Systems, 2015, 71, 13-22.	5.1	9
45	ROSLab: Sharing ROS Code Interactively With Docker and JupyterLab. IEEE Robotics and Automation Magazine, 2019, 26, 64-69.	2.0	9
46	The UJI Aerial Librarian Robot: A Quadcopter for Visual Library Inventory and Book Localisation. Sensors, 2021, 21, 1079.	3.8	9
47	Energy Efficient Complete Coverage Path Planning for Vacuum Cleaning Robots. Lecture Notes in Electrical Engineering, 2012, , 23-31.	0.4	9
48	Sensor-based learning for practical planning of fine motions in robotics. Information Sciences, 2002, 145, 147-168.	6.9	8
49	Vision-Based Grasp Tracking for Planar Objects. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2008, 38, 844-849.	2.9	8
50	The effects of immersive tendency and need to belong on human-robot interaction. , 2012, , .		8
51	Bayesian multimodal integration in a robot replicating human head and eye movements. , 2014, , .		8
52	Vision for Robust Robot Manipulation. Sensors, 2019, 19, 1648.	3.8	8
53	Who will Subscribe to My Streaming Channel?. , 2019, , .		8
54	An Examination of Psychological Factors Affecting Drivers' Perceptions and Attitudes Toward Car Navigation Systems. Lecture Notes in Electrical Engineering, 2013, , 555-562.	0.4	8

#	Article	IF	CITATIONS
55	Economic Feasibility of Renewable Electricity Generation Systems for Local Government Office: Evaluation of the Jeju Special Self-Governing Province in South Korea. Sustainability, 2017, 9, 82.	3.2	7
56	Effects of Screen Size in Mobile Learning Over Time. , 2018, , .		7
57	Can Large Educational Institutes Become Free from Grid Systems? Determination of Hybrid Renewable Energy Systems in Thailand. Applied Sciences (Switzerland), 2019, 9, 2319.	2.5	7
58	Symbol grounding through robotic manipulation in cognitive systems. Robotics and Autonomous Systems, 2007, 55, 851-859.	5.1	6
59	Brain mechanisms for robotic object pose estimation. , 2008, , .		6
60	Economic and Environmental Benefits of Optimized Hybrid Renewable Energy Generation Systems at Jeju National University, South Korea. Sustainability, 2016, 8, 877.	3.2	6
61	For a Green Stadium: Economic Feasibility of Sustainable Renewable Electricity Generation at the Jeju World Cup Venue. Sustainability, 2016, 8, 969.	3.2	6
62	A 3D grasping system based on multimodal visual and tactile processing. Industrial Robot, 2009, 36, 365-369.	2.1	5
63	Performance Evaluation and Benchmarking of Robotic and Automation Systems [TC Spotlight. IEEE Robotics and Automation Magazine, 2010, 17, 120-122.	2.0	5
64	A Test-Bed Internet Based Architecture Proposal for Benchmarking of Visual Servoing Techniques. , 2012, , .		5
65	Visual object recognition for robot tasks in real-life scenarios. , 2013, , .		5
66	Robot Vision for Manipulation: A Trip to Real-World Applications. IEEE Access, 2021, 9, 3471-3481.	4.2	5
67	Integrating Sensor Models in Deep Learning Boosts Performance: Application to Monocular Depth Estimation in Warehouse Automation. Sensors, 2021, 21, 1437.	3.8	5
68	An Omnidirectional Platform for Education and Research in Cooperative Robotics. Electronics (Switzerland), 2022, 11, 499.	3.1	5
69	The advantages of exploiting grasp redundancy in robotic manipulation. , 2011, , .		4
70	Usability of the Stylus Pen in Mobile Electronic Documentation. Electronics (Switzerland), 2015, 4, 922-932.	3.1	4
71	Motion Detection in Static Backgrounds. SpringerBriefs in Computer Science, 2012, , 5-42.	0.2	4
72	Plastic Representation of the Reachable Space for a Humanoid Robot. Lecture Notes in Computer Science, 2012, , 167-176.	1.3	4

5

#	Article	IF	CITATIONS
73	ROBUST GRASPING OF 3D OBJECTS WITH STEREO VISION AND TACTILE FEEDBACK. , 2008, , .		4
74	The Effects of Robot's Body Gesture and Gender in Human-Robot Interaction. , 2011, , .		4
75	A Pilot Study on Saccadic Adaptation Experiments with Robots. Lecture Notes in Computer Science, 2012, , 83-94.	1.3	4
76	An automatic transformation from bimodal to pseudo-binary images. Lecture Notes in Computer Science, 1997, , 231-238.	1.3	4
77	A simple algorithm for intelligent manipulator collision-free motion. Applied Intelligence, 1994, 4, 83-102.	5.3	3
78	Vision and Grasping: Humans vs. Robots. Lecture Notes in Computer Science, 2005, , 366-375.	1.3	3
79	A framework for compliant physical interaction based on multisensor information. , 2008, , .		3
80	An integrated virtual environment for visual-based reaching. , 2011, , .		3
81	Visual surveillance for human-robot interaction. , 2012, , .		3
82	AN ACCEPTANCE MODEL FOR SERVICE ROBOTS IN GLOBAL MARKETS. International Journal of Humanoid Robotics, 2012, 09, 1250026.	1.1	3
83	The Effects of Multimodal Feedback and Gender on Task Performance of Stylus Pen Users. International Journal of Advanced Robotic Systems, 2012, 9, 30.	2.1	3
84	Contact localization through robot and object motion from point clouds. , 2013, , .		3
85	Tombatossals: A humanoid torso for autonomous sensor-based tasks. , 2015, , .		3
86	Determinants for the success of regional ICT ventures: a close examination of South Korea. SpringerPlus, 2016, 5, 1039.	1.2	3
87	Robust Motion Detection and Tracking for Human-Robot Interaction. , 2017, , .		3
88	Student Acceptance Model of Educational Games in University Class. , 2018, , .		3
89	Analysis of Variable-Stiffness Soft Finger Joints. Advances in Intelligent Systems and Computing, 2019, , 334-345.	0.6	3
90	A Practical Approach for Picking Items in an Online Shopping Warehouse. Applied Sciences (Switzerland), 2021, 11, 5805.	2.5	3

6

#	Article	IF	CITATIONS
91	Depth Estimation during Fixational Head Movements in a Humanoid Robot. Lecture Notes in Computer Science, 2013, , 264-273.	1.3	3
92	Do Children See Robots Differently? A Study Comparing Eye-Movements of Adults vs. Children When Looking at Robotic Faces. Lecture Notes in Electrical Engineering, 2011, , 421-427.	0.4	3
93	Parallel collision detection between moving robots for practical motion planning. Journal of Field Robotics, 2001, 18, 487-506.	0.7	2
94	3D Grasp Synthesis Based on Object Exploration. , 2006, , .		2
95	Safety for human-robot interaction in dynamic environments. , 2009, , .		2
96	Robot as teammate vs. opponent in video gaming. , 2011, , .		2
97	Interaction in robotics with a combination of vision, tactile and force sensing. , 2011, , .		2
98	Facial Recognition Patterns of Children and Adults Looking at Robotic Faces. International Journal of Advanced Robotic Systems, 2012, 9, 28.	2.1	2
99	Reaching for the Unreachable: Reorganization of Reaching with Walking. IEEE Transactions on Autonomous Mental Development, 2013, 5, 162-172.	1.6	2
100	Application of the visuo-oculomotor transformation to ballistic and visually-guided eye movements. , 2013, , .		2
101	Visual people detection for safe Human-Robot Interaction. , 2013, , .		2
102	An Active System for Visually-Guided Reaching in 3D across Binocular Fixations. Scientific World Journal, The, 2014, 2014, 1-16.	2.1	2
103	An RGB-D Visual Application for Error Detection in Robot Grasping Tasks. Advances in Intelligent Systems and Computing, 2017, , 243-254.	0.6	2
104	Eco-Friendly Education Facilities: The Case of a Public Education Building in South Korea. Applied Sciences (Switzerland), 2018, 8, 1733.	2.5	2
105	Multi-robot User Interface for Cooperative Transportation Tasks. Lecture Notes in Computer Science, 2019, , 77-81.	1.3	2
106	Playful Interaction with Humanoid Robots for Social Development in Autistic Children: a Pilot Study. , 2019, , .		2
107	Validation of Features for Characterizing Robot Grasps. Lecture Notes in Computer Science, 2003, , 193-200.	1.3	2
108	Integration of Stereoscopic and Perspective Cues for Slant Estimation in Natural and Artificial Systems. Lecture Notes in Computer Science, 2007, , 399-408.	1.3	2

#	Article	IF	CITATIONS
109	Eye-Hand Coordination for Reaching in Dorsal Stream Area V6A: Computational Lessons. Lecture Notes in Computer Science, 2009, , 304-313.	1.3	2
110	A General Framework for Naming Qualitative Models Based on Intervals. Advances in Intelligent and Soft Computing, 2012, , 681-688.	0.2	2
111	<title>Classification system for pieces of Porcelanatto based on computer vision</title> . , 1994, , .		1
112	Integration of Self-Organizing Feature Maps and reinforcement learning in robotics. Lecture Notes in Computer Science, 1997, , 1344-1354.	1.3	1
113	Coordinated motion of two robot arms for real applications. Lecture Notes in Computer Science, 1998, , 122-131.	1.3	1
114	a qualitative-connectionist approach to Robotic Spatial Planning: the Peg-in-Hole case study. Spatial Cognition and Computation, 2000, 2, 51-76.	1.2	1
115	Editorial: Towards practical motion planners. Journal of Field Robotics, 2001, 18, 401-404.	0.7	1
116	Guest Editorial: Challenges in Motion Planning. Journal of Intelligent and Robotic Systems: Theory and Applications, 2003, 38, 1-4.	3.4	1
117	Trying anyways: How ignoring the errors may help in learning new skills. , 2011, , .		1
118	Predicting the internal model of a robotic system from its morphology. Robotics and Autonomous Systems, 2018, 110, 33-43.	5.1	1
119	A Biologically Inspired Approach for Robot Depth Estimation. Computational Intelligence and Neuroscience, 2018, 2018, 1-16.	1.7	1
120	Improving robot visual skills by means of a bio-inspired model. , 2019, , .		1
121	Find It – An Assistant Home Agent. Advances in Intelligent Systems and Computing, 2013, , 121-128.	0.6	1
122	How Walking Influences the Development of Absolute Distance Perception. Lecture Notes in Computer Science, 2012, , 65-74.	1.3	1
123	Robust Object Recognition in Unstructured Environments. Advances in Intelligent Systems and Computing, 2013, , 705-714.	0.6	1
124	Animal Social Behaviour: A Visual Analysis. Lecture Notes in Computer Science, 2014, , 320-327.	1.3	1
125	Conflict Resolution in Robotics. , 0, , 2623-2638.		1

#	Article	IF	CITATIONS
127	Knowledge Modeling of Program Supervision Task and its Application to Knowledge Base Verification. Applied Intelligence, 1999, 10, 185-196.	5.3	0
128	A Control Architecture for Compliant Execution of Manipulation Tasks. , 2006, , .		0
129	Hierarchical object recognition inspired by primate brain mechanisms. , 2011, , .		Ο
130	Online gaming with robots vs. computers as allies vs. opponents. , 2012, , .		0
131	Initial weight estimation for learning the internal model based on the knowledge of the robot morphology. , 2016, , .		Ο
132	Robot Depth Estimation Inspired by Fixational Movements. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 1356-1366.	3.8	0
133	Toward an Integrated Visuomotor Representation of the Peripersonal Space. Lecture Notes in Computer Science, 2009, , 314-323.	1.3	0
134	A panoramic vision system for human-robot interaction. , 2010, , .		0
135	Qualitative Acceleration Model: Representation, Reasoning and Application. Advances in Intelligent Systems and Computing, 2013, , 87-94.	0.6	0
136	Object Recognition in Cluttered Environments. , 2013, , .		0
137	Intelligent Robotic Grasping?. Cognitive Systems Monographs, 2016, , 39-56.	0.1	0
138	Visuomotor Transformations for Grasp Planning and Execution. Cognitive Systems Monographs, 2016, , 119-143.	0.1	0
139	Discovering the Relationship Between the Morphology and the Internal Model in a Robot System by Means of Neural Networks. Advances in Intelligent Systems and Computing, 2017, , 839-852.	0.6	0
140	Grasping Strategies for Picking Items in an Online Shopping Warehouse. Advances in Intelligent Systems and Computing, 2019, , 775-785.	0.6	0
141	Multiple Path Planner Integration for Obstacle Avoidance: Movelt! and Potential Field Planner Synergy, Advances in Intelligent Systems and Computing, 2019, 78-85	0.6	0