Reena Saxena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5873635/publications.pdf

Version: 2024-02-01

623734 552781 32 730 14 26 citations h-index g-index papers 32 32 32 518 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Recent Progress in Nanomaterials for Adsorptive Removal of Organic Contaminants from Wastewater. ChemistrySelect, 2020, 5, 335-353.	1.5	113
2	Highly efficient and rapid removal of a toxic dye: Adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes. Surfaces and Interfaces, 2020, 21, 100639.	3.0	97
3	Salicylic acid functionalized polystyrene sorbent amberlite XAD-2. Synthesis and applications as a preconcentrator in the determination of zinc(II) and lead(II) by using atomic absorption spectrometry. Analyst, The, 1995, 120, 403.	3.5	89
4	Synthesis of a chelating polymer matrix by immobilizing Alizarin Red-S on Amberlite XAD-2 and its application to the preconcentration of lead(II), cadmium(II), zinc(II) and nickel(II). Analytica Chimica Acta, 1994, 295, 199-204.	5.4	87
5	Pyrocatechol Violet immobilized Amberlite XAD-2: synthesis and metal-ion uptake properties suitable for analytical applications. Analytica Chimica Acta, 1997, 340, 285-290.	5.4	84
6	Flow injection online solid phase extraction system using Amberlite XAD-16 functionalized with 8-hydroxyquinoline for copper and zinc determination by flame atomic absorption spectrometry. RSC Advances, 2014, 4, 20216-20225.	3.6	23
7	On-line speciation of chromium using a modified chelating resin and determination in industrial water samples by flame atomic absorption spectrometry. New Journal of Chemistry, 2016, 40, 1412-1419.	2.8	21
8	Accurate data prediction by fuzzy inference model for adsorption of hazardous azo dyes by novel algal doped magnetic chitosan bionanocomposite. Environmental Research, 2022, 214, 113844.	7. 5	17
9	Online Preconcentration Procedure for Chromium Speciation and Determination in Industrial Water Samples Using Flame Atomic Absorption Spectrometry. Analytical Sciences, 2016, 32, 1321-1325.	1.6	16
10	Chromium Speciation Using Flow-injection Preconcentration on Xylenol Orange Functionalized Amberlite XAD-16 and Determination in Industrial Water Samples by Flame Atomic Absorption Spectrometry. Analytical Sciences, 2015, 31, 1303-1308.	1.6	15
11	On-line solid phase extraction method based on flow injection-FAAS using 1,10-phenanthroline modified chelating resin for chromium speciation in industrial water samples. RSC Advances, 2016, 6, 10775-10782.	3.6	15
12	Asparagine functionalized MWCNTs for adsorptive removal of hazardous cationic dyes: Exploring kinetics, isotherm and mechanism. Surfaces and Interfaces, 2021, 25, 101187.	3.0	15
13	Flow-injection solid phase extraction using Dowex Optipore L493 loaded with dithizone for preconcentration of chromium species from industrial waters and determination by FAAS. RSC Advances, 2015, 5, 69196-69204.	3.6	14
14	Modified carbon nanotubes in online speciation of chromium in real water samples using hyphenated FI-FAAS. New Journal of Chemistry, 2017, 41, 5034-5039.	2.8	14
15	Recent advances in carbon based nanomaterials as electrochemical sensor for toxic metal ions in environmental applications. Materials Today: Proceedings, 2021, 45, 3741-3753.	1.8	13
16	Thiol-functionalized multiwall carbon nanotubes for electrochemical sensing of thallium. Materials Chemistry and Physics, 2021, 259, 124068.	4.0	12
17	Green Synthesized Nanomaterialâ€based Colorimetric Sensors for Detection of Environmental Toxicants. ChemNanoMat, 2021, 7, 392-414.	2.8	11
18	Determination of Lead in Water Using Amberlite XAD-2 Functionalized With Xylenol Orange Resin as Column Material for On-line Flow Injection- Flame Atomic Absorption Spectrometry Analysis. Atomic Spectroscopy, 2012, 33, 83-91.	1.2	11

#	Article	IF	CITATIONS
19	Efficient lead preconcentration using two chemically functionalized carbon nanotubes in hyphenated flow injection-flame atomic absorption spectrometry system. Journal of Chromatography A, 2021, 1638, 461888.	3.7	10
20	Fast and efficient single step synthesis of modified magnetic nanocatalyst for catalytic reduction of 4-nitrophenol. Materials Chemistry and Physics, 2022, 276, 125437.	4.0	10
21	Rapid on-line solid phase enrichment using polytetrafluoroethylene beads for chromium speciation in contaminated real water samples. International Journal of Environmental Science and Technology, 2019, 16, 383-390.	3.5	8
22	Determination of copper in industrial water by innovative flow injection flame atomic absorption spectrometry. Instrumentation Science and Technology, 2016, 44, 210-222.	1.8	5
23	Comparative Insight into the Performance of Two Different Amineâ€Functionalized CNTs for the Chemical Speciation of Chromium. ChemistrySelect, 2020, 5, 6415-6423.	1.5	5
24	On-line Preconcentration and Determination of Cd(II) in Water by Flow Injection-Flame Atomic Absorption Spectrometry (FI-FAAS) Using Salicylic Acid Functionalized Amberlite XAD-2 Resin-Packed Minicolumn. Atomic Spectroscopy, 2013, 34, 155-163.	1.2	5
25	Flow Injection On-line Preconcentration of Trace Zinc(II) lons in Water Samples Using a Synthesized 8-Hydroxyquinoline Functionalized Amberlite XAD-2 Resin and Determination by Flame Atomic Absorption Spectrometry. Atomic Spectroscopy, 2014, 35, 154-162.	1.2	5
26	Determination of Metal Contaminants in Beverages Using Solid Phase Extraction-Based Preconcentration and Subsequent Determination Using Spectro-Analytical Techniques., 2019, , 123-159.		4
27	4â€Aminosalicylic Acid Functionalized Multiwalled Carbon Nanotubes for Rapid Removal of Crystal Violet Dye from Wastewater Using Minicolumn. ChemistrySelect, 2021, 6, 10601-10608.	1.5	4
28	Chemically Modified Polymeric Solid Support for Chromium(III) Speciation in Industrially Polluted Water Samples and Determination by FI-FAAS. Atomic Spectroscopy, 2017, 38, 186-193.	1.2	2
29	Chromium Speciation in Contaminated Water Samples Using PTFE Beads Packed Minicolumn and FI-FAAS Determination. Atomic Spectroscopy, 2018, 39, 151-157.	1.2	2
30	Biopolymerâ∈Based Biomatrices â∈" Organic Strategies to Combat Micronutrient Deficit for Dynamic Agronomy. ChemistrySelect, 2022, 7, .	1.5	2
31	Potential Protein and Enzyme Targets for Inâ€silico Development and Repurposing of Drug Against Coronaviruses. ChemistrySelect, 2021, 6, 13363-13381.	1.5	1
32	Magnetite Carbon Nanomaterials for Environmental Remediation. Green Energy and Technology, 2021, , 85-122.	0.6	0