Gyorgy Panyi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/587350/publications.pdf

Version: 2024-02-01

109 papers	2,837 citations	30 h-index	214721 47 g-index
113	113 docs citations	113	2724
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Activation mechanism dependent surface exposure of cellular factor XIII on activated platelets and platelet microparticles. Journal of Thrombosis and Haemostasis, 2022, 20, 1223-1235.	1.9	14
2	Role of C-Terminal Domain and Membrane Potential in the Mobility of Kv1.3 Channels in Immune Synapse Forming T Cells. International Journal of Molecular Sciences, 2022, 23, 3313.	1.8	1
3	sVmKTx, a transcriptome analysis-based synthetic peptide analogue of Vm24, inhibits Kv1.3 channels of human T cells with improved selectivity. Biochemical Pharmacology, 2022, 199, 115023.	2.0	4
4	Cm28, a scorpion toxin having a unique primary structure, inhibits KV1.2 and KV1.3 with high affinity. Journal of General Physiology, 2022, 154, .	0.9	8
5	The Kv1.3 K+ channel in the immune system and its "precision pharmacology―using peptide toxins. Biologia Futura, 2021, 72, 75-83.	0.6	13
6	An ï‰-3, but Not an ï‰-6 Polyunsaturated Fatty Acid Decreases Membrane Dipole Potential and Stimulates Endo-Lysosomal Escape of Penetratin. Frontiers in Cell and Developmental Biology, 2021, 9, 647300.	1.8	11
7	Shaker-IR K+ channel gating in heavy water: Role of structural water molecules in inactivation. Journal of General Physiology, 2021, 153, .	0.9	5
8	Lipopolysaccharide influences the plasma and brain pharmacokinetics of subcutaneously-administered HsTX1[R14A], a KV1.3-blocking peptide. Toxicon, 2021, 195, 29-36.	0.8	5
9	Enhanced Expression of Human Epididymis Protein 4 (HE4) Reflecting Pro-Inflammatory Status Is Regulated by CFTR in Cystic Fibrosis Bronchial Epithelial Cells. Frontiers in Pharmacology, 2021, 12, 592184.	1.6	10
10	A disulfide-stabilised helical hairpin fold in acrorhagin I: An emerging structural motif in peptide toxins. Journal of Structural Biology, 2021, 213, 107692.	1.3	10
11	KCNE4-dependent functional consequences of Kv1.3-related leukocyte physiology. Scientific Reports, 2021, 11, 14632.	1.6	4
12	Optimization of Pichia pastoris Expression System for High-Level Production of Margatoxin. Frontiers in Pharmacology, 2021, 12, 733610.	1.6	8
13	Immunomagnetic separation is a suitable method for electrophysiology and ion channel pharmacology studies on T cells. Channels, 2021, 15, 53-66.	1.5	5
14	Immune Synapse Residency of Orai1 Alters Ca2+ Response of T Cells. International Journal of Molecular Sciences, 2021, 22, 11514.	1.8	4
15	Cyclodextrins Exert a Ligand-like Current Inhibitory Effect on the KV1.3 Ion Channel Independent of Membrane Cholesterol Extraction. Frontiers in Molecular Biosciences, 2021, 8, 735357.	1.6	9
16	Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Pharmaceuticals, 2021, 14, 1303.	1.7	10
17	Structural basis of the potency and selectivity of Urotoxin, a potent Kv1 blocker from scorpion venom. Biochemical Pharmacology, 2020, 174, 113782.	2.0	12
18	Weaponisation â€~on the fly': Convergent recruitment of knottin and defensin peptide scaffolds into the venom of predatory assassin flies. Insect Biochemistry and Molecular Biology, 2020, 118, 103310.	1.2	10

#	Article	IF	CITATIONS
19	The voltage-gated proton channel hHv1 is functionally expressed in human chorion-derived mesenchymal stem cells. Scientific Reports, 2020, 10, 7100.	1.6	10
20	The voltage-gated potassium channel KV1.3 as a therapeutic target for venom-derived peptides. Biochemical Pharmacology, 2020, 181, 114146.	2.0	39
21	Periodic Membrane Potential and Ca2+ Oscillations in T Cells Forming an Immune Synapse. International Journal of Molecular Sciences, 2020, 21, 1568.	1.8	9
22	Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158706.	1.2	50
23	A Novel Insecticidal Spider Peptide that Affects the Mammalian Voltage-Gated Ion Channel hKv1.5. Frontiers in Pharmacology, 2020, 11, 563858.	1.6	11
24	Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Frontiers in Pharmacology, 2020, 11, 586599.	1.6	20
25	The activation gate controls steady-state inactivation and recovery from inactivation in <i>Shaker</i> . Journal of General Physiology, 2020, 152, .	0.9	7
26	Pore-modulating toxins exploit inherent slow inactivation to block K ⁺ channels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18700-18709.	3.3	23
27	N-methyl-D-aspartate (NMDA) receptor expression and function is required for early chondrogenesis. Cell Communication and Signaling, 2019, 17, 166.	2.7	9
28	Determining the target of membrane sterols on voltage-gated potassium channels. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 312-325.	1.2	13
29	Synthesis, folding, structure and activity of a predicted peptide from the sea anemone Oulactis sp. with an ShKT fold. Toxicon, 2018, 150, 50-59.	0.8	19
30	Selective Na _V 1.1 activation rescues Dravet syndrome mice from seizures and premature death. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8077-E8085.	3.3	105
31	Membrane Potential Distinctly Modulates Mobility and Signaling of IL-2 and IL-15 Receptors in T Cells. Biophysical Journal, 2018, 114, 2473-2482.	0.2	8
32	The C-terminal HRET sequence of Kv1.3 regulates gating rather than targeting of Kv1.3 to the plasma membrane. Scientific Reports, 2018, 8, 5937.	1.6	4
33	Pi5 and Pi6, two undescribed peptides from the venom of the scorpion Pandinus imperator and their effects on K + -channels. Toxicon, 2017, 133, 136-144.	0.8	7
34	Optimization of the Synthesis of Flavone–Amino Acid and Flavone–Dipeptide Hybrids via Buchwald–Hartwig Reaction. Journal of Organic Chemistry, 2017, 82, 4578-4587.	1.7	20
35	A new mechanism of voltage-dependent gating exposed by KV10.1 channels interrupted between voltage sensor and pore. Journal of General Physiology, 2017, 149, 577-593.	0.9	30
36	Sterol Regulation of Voltage-Gated K+ Channels. Current Topics in Membranes, 2017, 80, 255-292.	0.5	14

#	Article	IF	Citations
37	An engineered scorpion toxin analogue with improved Kv1.3 selectivity displays reduced conformational flexibility. Scientific Reports, 2016, 5, 18397.	1.6	21
38	Closed-state inactivation involving an internal gate in Kv4.1 channels modulates pore blockade by intracellular quaternary ammonium ions. Scientific Reports, 2016, 6, 31131.	1.6	6
39	7DHC-induced changes of Kv1.3 operation contributes to modified T cell function in Smith-Lemli-Opitz syndrome. Pflugers Archiv European Journal of Physiology, 2016, 468, 1403-1418.	1.3	15
40	Different expression of \hat{l}^2 subunits of the KCa1.1 channel by invasive and non-invasive human fibroblast-like synoviocytes. Arthritis Research and Therapy, 2016, 18, 103.	1.6	21
41	Probing pattern and dynamics of disulfide bridges using synthesis and NMR of an ion channel blocker peptide toxin with multiple diselenide bonds. Chemical Science, 2016, 7, 2666-2673.	3.7	7
42	The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. Immunology Letters, 2016, 171, 60-69.	1.1	9
43	Isolation, chemical and functional characterization of several new K+-channel blocking peptides from the venom of the scorpion Centruroides tecomanus. Toxicon, 2016, 115, 1-12.	0.8	24
44	Potassium Channel Blocking Peptide Toxins from Scorpion Venom., 2015,, 493-527.		3
45	Mesenchymal Stromal Cell-Like Cells Set the Balance of Stimulatory and Inhibitory Signals in Monocyte-Derived Dendritic Cells. Stem Cells and Development, 2015, 24, 1805-1816.	1.1	8
46	Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Signalling Exerts Chondrogenesis Promoting and Protecting Effects: Implication of Calcineurin as a Downstream Target. PLoS ONE, 2014, 9, e91541.	1.1	40
47	lon channels and anti-cancer immunity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130106.	1.8	50
48	Structure, Molecular Modeling, and Function of the Novel Potassium Channel Blocker Urotoxin Isolated from the Venom of the Australian Scorpion <i>Urodacus yaschenkoi</i> Pharmacology, 2014, 86, 28-41.	1.0	21
49	Margatoxin is a non-selective inhibitor of human Kv1.3 K+ channels. Toxicon, 2014, 87, 6-16.	0.8	61
50	Margatoxin is a Nonselective Inhibitor of Kv1.3 Channels - A Comprehensive Study. Biophysical Journal, 2014, 106, 551a-552a.	0.2	2
51	The role of PSD-95 in the rearrangement of Kv1.3 channels to the immunological synapse. Pflugers Archiv European Journal of Physiology, 2013, 465, 1341-1353.	1.3	24
52	Molecular Determinants of Selectivity for Kv1.3 K+ Channels. Biophysical Journal, 2013, 104, 465a.	0.2	2
53	OcyKTx2, a new K+-channel toxin characterized from the venom of the scorpion Opisthacanthus cayaporum. Peptides, 2013, 46, 40-46.	1.2	14
54	Analysis of the K+ current in human CD4+ T lymphocytes in hypercholesterolemic state. Cellular Immunology, 2013, 281, 20-26.	1.4	8

#	Article	IF	CITATIONS
55	Transient receptor potential vanilloidâ€2 mediates the effects of transient heat shock on endocytosis of human monocyteâ€derived dendritic cells. FEBS Letters, 2013, 587, 1440-1445.	1.3	32
56	Membrane microdomain organization, calcium signal, and NFAT activation as an important axis in polarized Th cell function. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83A, 185-196.	1.1	19
57	Vm24, a Natural Immunosuppressive Peptide, Potently and Selectively Blocks Kv1.3 Potassium Channels of Human T Cells. Molecular Pharmacology, 2012, 82, 372-382.	1.0	83
58	Structure, Function, and Chemical Synthesis of <i>Vaejovis mexicanus</i> Peptide 24: A Novel Potent Blocker of Kv1.3 Potassium Channels of Human T Lymphocytes. Biochemistry, 2012, 51, 4049-4061.	1.2	51
59	Intact rat superior mesenteric artery endothelium is an electrical syncytium and expresses strong inward rectifier K+ conductance. Biochemical and Biophysical Research Communications, 2011, 410, 501-507.	1.0	14
60	Switch of Voltage-Gated K+ Channel Expression in the Plasma Membrane of Chondrogenic Cells Affects Cytosolic Ca2+-Oscillations and Cartilage Formation. PLoS ONE, 2011, 6, e27957.	1.1	39
61	Effects of the PKC inhibitors chelerythrine and bisindolylmaleimide I (GF 109203X) on delayed rectifier K+ currents. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 383, 141-148.	1.4	16
62	Voltage-Gated Sodium Channel Nav1.7 Maintains the Membrane Potential and Regulates the Activation and Chemokine-Induced Migration of a Monocyte-Derived Dendritic Cell Subset. Journal of Immunology, 2011, 187, 1273-1280.	0.4	43
63	Answer to the "Comment on functional consequences of Kv1.3 ion channel rearrangement into the immunological synapseâ€-by Stefan Bittner et al. [Immunol. Lett. 125 (Aug 15 (2)) (2009) 156–157]. Immunology Letters, 2010, 129, 47-49.	1.1	1
64	lon channels in T lymphocytes: An update on facts, mechanisms and therapeutic targeting in autoimmune diseases. Immunology Letters, 2010, 130, 19-25.	1.1	46
65	Developmental Switch of the Expression of Ion Channels in Human Dendritic Cells. Journal of Immunology, 2009, 183, 4483-4492.	0.4	51
66	Potassium channel expression in human CD4+ regulatory and na \tilde{A} -ve T cells from healthy subjects and multiple sclerosis patients. Immunology Letters, 2009, 124, 95-101.	1.1	22
67	Functional consequences of Kv1.3 ion channel rearrangement into the immunological synapse. Immunology Letters, 2009, 125, 15-21.	1.1	22
68	Tst26, a novel peptide blocker of Kv1.2 and Kv1.3 channels from the venom of Tityus stigmurus. Toxicon, 2009, 54 , $379-389$.	0.8	30
69	Effects of changes in extracellular pH and potassium concentration on Kv1.3 inactivation. European Biophysics Journal, 2008, 37, 1145-1156.	1.2	7
70	IV. International conference on molecular recognition. European Biophysics Journal, 2008, 37, 1083-1084.	1.2	1
71	A selective blocker of Kv1.2 and Kv1.3 potassium channels from the venom of the scorpion Centruroides suffusus suffusus. Biochemical Pharmacology, 2008, 76, 1142-1154.	2.0	46
72	Involvement of Membrane Channels in Autoimmune Disorders. Current Pharmaceutical Design, 2007, 13, 2456-2468.	0.9	8

#	Article	IF	CITATIONS
73	Probing the Cavity of the Slow Inactivated Conformation of Shaker Potassium Channels. Journal of General Physiology, 2007, 129, 403-418.	0.9	37
74	Nutrition and immune system: Certain fatty acids differently modify membrane composition and consequently kinetics of KV1.3 channels of human peripheral lymphocytes. Immunobiology, 2007, 212, 213-227.	0.8	13
75	Differential expression of potassium currents in Deiters cells of the guinea pig cochlea. Pflugers Archiv European Journal of Physiology, 2006, 452, 332-341.	1.3	6
76	Changes in Purinoceptor Distribution and Intracellular Calcium Levels following Noise Exposure in the Outer Hair Cells of the Guinea Pig. Journal of Membrane Biology, 2006, 213, 135-141.	1.0	7
77	Death or survival: Membrane ceramide controls the fate and activation of antigen-specific T-cells depending on signal strength and duration. Cellular Signalling, 2006, 18, 294-306.	1.7	37
78	Cross Talk between Activation and Slow Inactivation Gates of Shaker Potassium Channels. Journal of General Physiology, 2006, 128, 547-559.	0.9	81
79	K+ Channel Blockers: Novel Tools to Inhibit T Cell Activation Leading to Specific Immunosuppression. Current Pharmaceutical Design, 2006, 12, 2199-2220.	0.9	89
80	The EBSA prize lecture. European Biophysics Journal, 2005, 34, 515-530.	1.2	50
81	Anuroctoxin, a New Scorpion Toxin of the α-KTx 6 Subfamily, Is Highly Selective for Kv1.3 over IKCa1 Ion Channels of Human T Lymphocytes. Molecular Pharmacology, 2005, 67, 1034-1044.	1.0	58
82	Novel \hat{l}_{\pm} -KTx peptides from the venom of the scorpion Centruroides elegans selectively blockade Kv1.3 over IKCa1 K+ channels of T cells. Toxicon, 2005, 46, 418-429.	0.8	31
83	Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1285-1290.	3.3	119
84	pH-dependent modulation of Kv1.3 inactivation: role of His399. American Journal of Physiology - Cell Physiology, 2004, 287, C1067-C1076.	2.1	33
85	Regulation of the lateral wall stiffness by acetylcholine and GABA in the outer hair cells of the guinea pig. European Journal of Neuroscience, 2004, 20, 3364-3370.	1.2	19
86	Ion channels and lymphocyte activation. Immunology Letters, 2004, 92, 55-66.	1.1	101
87	New phenotypic, functional and electrophysiological characteristics of KG-1 cells. Immunology Letters, 2004, 92, 97-106.	1.1	13
88	Looking through ion channels: recharged concepts in T-cell signaling. Trends in Immunology, 2004, 25, 565-569.	2.9	37
89	Differential expression of purinergic receptor subtypes in the outer hair cells of the guinea pig. Hearing Research, 2004, 196, 2-7.	0.9	28
90	An Alternative to Conventional Immunosuppression: Small-Molecule Inhibitors of Kv1.3 Channels. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2004, 4, 250-254.	3.4	14

#	Article	IF	Citations
91	Cholesterol modifies the gating of $Kv1.3$ in human T lymphocytes. Pflugers Archiv European Journal of Physiology, 2003, 445, 674-682.	1.3	82
92	Active and passive behaviour in the regulation of stiffness of the lateral wall in outer hair cells of the guinea-pig. Pflugers Archiv European Journal of Physiology, 2003, 447, 328-336.	1.3	13
93	Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 molecules in the plasma membrane of human T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2592-2597.	3.3	80
94	Drug- and mutagenesis-induced changes in the selectivity filter of a cardiac two-pore background K channel. Cardiovascular Research, 2003, 58, 46-54.	1.8	12
95	Two novel toxins from the Amazonian scorpion Tityus cambridgei that block Kv1.3 and Shaker B K+-channels with distinctly different affinities. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2002, 1601, 123-131.	1.1	74
96	Multiple Binding Sites for Melatonin on Kv1.3. Biophysical Journal, 2001, 80, 1280-1297.	0.2	17
97	Effects of Toxins Pi2 and Pi3 on Human T Lymphocyte Kv1.3 Channels: The Role of Glu7 and Lys24. Journal of Membrane Biology, 2001, 179, 13-25.	1.0	35
98	Blockage of Human T Lymphocyte Kv1.3 Channels by Pi1, a Novel Class of Scorpion Toxin. Biochemical and Biophysical Research Communications, 2000, 278, 34-37.	1.0	25
99	Pandinus imperatorScorpion Venom Blocks Voltage-Gated K+Channels in Human Lymphocytes. Biochemical and Biophysical Research Communications, 1998, 242, 621-625.	1.0	21
100	Ionic Conductances in Chicken Osteoclasts. , 1998, , 236-245.		0
101	Immunosuppressors Inhibit Voltage-Gated Potassium Channels in Human Peripheral Blood Lymphocytes. Biochemical and Biophysical Research Communications, 1996, 221, 254-258.	1.0	22
102	Assembly and suppression of endogenous Kv1.3 channels in human T cells Journal of General Physiology, 1996, 107, 409-420.	0.9	30
103	Plasma-membrane-Bound mcromoleculas are dynamically aggregated to form non-random codistribution patterns of selected functional elements. Do pattern recognition processes govern antigen presentation and intercellular interactions?. Journal of Molecular Recognition, 1995, 8, 237-246.	1.1	8
104	Ion-channel activities regulate transmembrane signaling in thymocyte apoptosis and T-cell activation. Immunology Letters, 1995, 44, 91-95.	1.1	24
105	C-type inactivation of a voltage-gated K+ channel occurs by a cooperative mechanism. Biophysical Journal, 1995, 69, 896-903.	0.2	160
106	Peripheral Blood Lymphocytes Display Reduced K+ Channel Activity in Aged Humans. Biochemical and Biophysical Research Communications, 1994, 199, 519-524.	1.0	8
107	A Ca2+-dependent K+-channel in freshly isolated and cultured chick osteoclasts. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1149, 63-72.	1.4	12
108	Biphasic Effect of Extracellular ATP on the Membrane Potential of Mouse Thymocytes. Biochemical and Biophysical Research Communications, 1993, 191, 378-384.	1.0	12

#	Article	lF	CITATIONS
109	Effect of cyclosporin A on the membrane potential and Ca2+ level of human lymphoid cell lines and mouse thymocytes. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1019, 159-165.	0.5	20