
Roberta Noberini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5873191/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Mass spectrometryâ€based characterization of histones in clinical samples: applications, progress, and challenges. FEBS Journal, 2022, 289, 1191-1213.	2.2	20
2	Intestinal differentiation involves cleavage of histone H3 N-terminal tails by multiple proteases. Nucleic Acids Research, 2021, 49, 791-804.	6.5	21
3	Anticancer innovative therapy congress: Highlights from the 10th anniversary edition. Cytokine and Growth Factor Reviews, 2021, 59, 1-8.	3.2	4
4	Spatial epi-proteomics enabled by histone post-translational modification analysis from low-abundance clinical samples. Clinical Epigenetics, 2021, 13, 145.	1.8	15
5	LSD1-directed therapy affects glioblastoma tumorigenicity by deregulating the protective ATF4-dependent integrated stress response. Science Translational Medicine, 2021, 13, eabf7036.	5.8	18
6	Enrichment of histones from patient samples for mass spectrometry-based analysis of post-translational modifications. Methods, 2020, 184, 19-28.	1.9	23
7	Label-Free Mass Spectrometry-Based Quantification of Linker Histone H1 Variants in Clinical Samples. International Journal of Molecular Sciences, 2020, 21, 7330.	1.8	8
8	Clinical Application of Mass Spectrometryâ€Based Proteomics in Lung Cancer Early Diagnosis. Proteomics - Clinical Applications, 2020, 14, 1900138.	0.8	14
9	hSWATH: Unlocking SWATH's Full Potential for an Untargeted Histone Perspective. Journal of Proteome Research, 2019, 18, 3840-3849.	1.8	12
10	Epigenetic drug target deconvolution by mass spectrometry–based technologies. Nature Structural and Molecular Biology, 2019, 26, 854-857.	3.6	9
11	Profiling of Epigenetic Features in Clinical Samples Reveals Novel Widespread Changes in Cancer. Cancers, 2019, 11, 723.	1.7	26
12	Mass Spectrometry and Epigenetics. , 2019, , 2251-2268.		0
13	Alternative digestion approaches improve histone modification mapping by mass spectrometry in clinical samples. Proteomics - Clinical Applications, 2019, 13, 1700166.	0.8	11
14	Extensive and systematic rewiring of histone post-translational modifications in cancer model systems. Nucleic Acids Research, 2018, 46, 3817-3832.	6.5	31
15	PAT-H-MS coupled with laser microdissection to study histone post-translational modifications in selected cell populations from pathology samples. Clinical Epigenetics, 2017, 9, 69.	1.8	17
16	Mass Spectrometry and Epigenetics. , 2017, , 1-18.		1
17	Protein kinase A can block EphA2 receptor–mediated cell repulsion by increasing EphA2 S897 phosphorylation. Molecular Biology of the Cell, 2016, 27, 2757-2770.	0.9	59
18	Mass-spectrometry analysis of histone post-translational modifications in pathology tissue using the PAT-H-MS approach. Data in Brief, 2016, 7, 188-194.	0.5	6

Roberta Noberini

#	Article	IF	CITATIONS
19	The contribution of mass spectrometry-based proteomics to understanding epigenetics. Epigenomics, 2016, 8, 429-445.	1.0	30
20	Recent advances in mass spectrometry analysis of histone post-translational modifications: potential clinical impact of the PAT-H-MS approach. Expert Review of Proteomics, 2016, 13, 245-250.	1.3	3
21	Pathology Tissue-quantitative Mass Spectrometry Analysis to Profile Histone Post-translational Modification Patterns in Patient Samples. Molecular and Cellular Proteomics, 2016, 15, 866-877.	2.5	41
22	Mass Spectrometry for the Identification of Posttranslational Modifications in Histones and Its Application in Clinical Epigenetics. , 2016, , 195-214.		1
23	Design, Synthesis and Bioevaluation of an EphA2 Receptorâ€Based Targeted Delivery System. ChemMedChem, 2014, 9, 1403-1412.	1.6	31
24	Quantitative Chemical Proteomics Identifies Novel Targets of the Anti-cancer Multi-kinase Inhibitor E-3810. Molecular and Cellular Proteomics, 2014, 13, 1495-1509.	2.5	14
25	Design, synthesis and characterization of novel small molecular inhibitors of ephrin-B2 binding to EphB4. Biochemical Pharmacology, 2013, 85, 507-513.	2.0	23
26	Amino Acid Conjugates of Lithocholic Acid As Antagonists of the EphA2 Receptor. Journal of Medicinal Chemistry, 2013, 56, 2936-2947.	2.9	50
27	HTS by NMR of Combinatorial Libraries: A Fragment-Based Approach to Ligand Discovery. Chemistry and Biology, 2013, 20, 19-33.	6.2	72
28	Targeted Delivery of Paclitaxel to EphA2-Expressing Cancer Cells. Clinical Cancer Research, 2013, 19, 128-137.	3.2	53
29	Distinctive binding of three antagonistic peptides to the ephrin-binding pocket of the EphA4 receptor. Biochemical Journal, 2012, 445, 47-56.	1.7	47
30	Profiling Eph receptor expression in cells and tissues. Cell Adhesion and Migration, 2012, 6, 102-156.	1.1	54
31	Inhibition of Eph receptor–ephrin ligand interaction by tea polyphenols. Pharmacological Research, 2012, 66, 363-373.	3.1	18
32	Novel Targeted System To Deliver Chemotherapeutic Drugs to EphA2-Expressing Cancer Cells. Journal of Medicinal Chemistry, 2012, 55, 2427-2436.	2.9	79
33	Targeting Eph receptors with peptides and small molecules: Progress and challenges. Seminars in Cell and Developmental Biology, 2012, 23, 51-57.	2.3	89
34	Structure–Activity Relationships and Mechanism of Action of Eph–ephrin Antagonists: Interaction of Cholanic Acid with the EphA2 Receptor. ChemMedChem, 2012, 7, 1071-1083.	1.6	31
35	A Disalicylic Acidâ€Furanyl Derivative Inhibits Ephrin Binding to a Subset of Eph Receptors. Chemical Biology and Drug Design, 2011, 78, 667-678.	1.5	39
36	Characterization of a novel angiogenic model based on stable, fluorescently labelled endothelial cell lines amenable to scale-up for high content screening. Biology of the Cell, 2011, 103, 467-481.	0.7	15

Roberta Noberini

#	Article	IF	CITATIONS
37	PECylation Potentiates the Effectiveness of an Antagonistic Peptide That Targets the EphB4 Receptor with Nanomolar Affinity. PLoS ONE, 2011, 6, e28611.	1.1	36
38	Structural Characterization of the EphA4-Ephrin-B2 Complex Reveals New Features Enabling Eph-Ephrin Binding Promiscuity. Journal of Biological Chemistry, 2010, 285, 644-654.	1.6	84
39	Proliferation and Tumor Suppression: Not Mutually Exclusive for Eph Receptors. Cancer Cell, 2009, 16, 452-454.	7.7	19
40	Structural and Binding Study on the Interaction of Small Molecule Antagonists with the EphA4 Receptor. FASEB Journal, 2009, 23, LB297.	0.2	0
41	Small Molecules Can Selectively Inhibit Ephrin Binding to the EphA4 and EphA2 Receptors. Journal of Biological Chemistry, 2008, 283, 29461-29472.	1.6	123
42	Crystal Structure and NMR Binding Reveal That Two Small Molecule Antagonists Target the High Affinity Ephrin-binding Channel of the EphA4 Receptor. Journal of Biological Chemistry, 2008, 283, 29473-29484.	1.6	66